Tīpoka ki ngā ihirangi matua
Whakaoti mō f, t, g, h, j, k, l, m, n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

h=i
Whakaarohia te whārite tuawhā. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
i=g
Whakaarohia te whārite tuatoru. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
g=i
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
i=f\times 5
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
\frac{i}{5}=f
Whakawehea ngā taha e rua ki te 5.
\frac{1}{5}i=f
Whakawehea te i ki te 5, kia riro ko \frac{1}{5}i.
f=\frac{1}{5}i
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{1}{5}it=\frac{3t+3}{5}
Whakaarohia te whārite tuatahi. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
it=3t+3
Whakareatia ngā taha e rua o te whārite ki te 5.
it-3t=3
Tangohia te 3t mai i ngā taha e rua.
\left(-3+i\right)t=3
Pahekotia te it me -3t, ka \left(-3+i\right)t.
t=\frac{3}{-3+i}
Whakawehea ngā taha e rua ki te -3+i.
t=\frac{3\left(-3-i\right)}{\left(-3+i\right)\left(-3-i\right)}
Me whakarea te taurunga me te tauraro o \frac{3}{-3+i} ki te haumi hiato o te tauraro, -3-i.
t=\frac{-9-3i}{10}
Mahia ngā whakarea i roto o \frac{3\left(-3-i\right)}{\left(-3+i\right)\left(-3-i\right)}.
t=-\frac{9}{10}-\frac{3}{10}i
Whakawehea te -9-3i ki te 10, kia riro ko -\frac{9}{10}-\frac{3}{10}i.
f=\frac{1}{5}i t=-\frac{9}{10}-\frac{3}{10}i g=i h=i j=i k=i l=i m=i n=i
Kua oti te pūnaha te whakatau.