Whakaoti mō f, x, g, h, j
j=i
Tohaina
Kua tāruatia ki te papatopenga
h=i
Whakaarohia te whārite tuawhā. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
i=g
Whakaarohia te whārite tuatoru. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
g=i
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
i=f\times 3
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
\frac{i}{3}=f
Whakawehea ngā taha e rua ki te 3.
\frac{1}{3}i=f
Whakawehea te i ki te 3, kia riro ko \frac{1}{3}i.
f=\frac{1}{3}i
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{1}{3}i\times \frac{1-x}{2+x}=1-4
Whakaarohia te whārite tuatahi. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
\frac{1}{3}i\left(1-x\right)=x+2+\left(x+2\right)\left(-4\right)
Tē taea kia ōrite te tāupe x ki -2 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x+2.
\frac{1}{3}i-\frac{1}{3}ix=x+2+\left(x+2\right)\left(-4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{1}{3}i ki te 1-x.
\frac{1}{3}i-\frac{1}{3}ix=x+2-4x-8
Whakamahia te āhuatanga tohatoha hei whakarea te x+2 ki te -4.
\frac{1}{3}i-\frac{1}{3}ix=-3x+2-8
Pahekotia te x me -4x, ka -3x.
\frac{1}{3}i-\frac{1}{3}ix=-3x-6
Tangohia te 8 i te 2, ka -6.
\frac{1}{3}i-\frac{1}{3}ix+3x=-6
Me tāpiri te 3x ki ngā taha e rua.
\frac{1}{3}i+\left(3-\frac{1}{3}i\right)x=-6
Pahekotia te -\frac{1}{3}ix me 3x, ka \left(3-\frac{1}{3}i\right)x.
\left(3-\frac{1}{3}i\right)x=-6-\frac{1}{3}i
Tangohia te \frac{1}{3}i mai i ngā taha e rua.
x=\frac{-6-\frac{1}{3}i}{3-\frac{1}{3}i}
Whakawehea ngā taha e rua ki te 3-\frac{1}{3}i.
x=\frac{\left(-6-\frac{1}{3}i\right)\left(3+\frac{1}{3}i\right)}{\left(3-\frac{1}{3}i\right)\left(3+\frac{1}{3}i\right)}
Me whakarea te taurunga me te tauraro o \frac{-6-\frac{1}{3}i}{3-\frac{1}{3}i} ki te haumi hiato o te tauraro, 3+\frac{1}{3}i.
x=\frac{-\frac{161}{9}-3i}{\frac{82}{9}}
Mahia ngā whakarea i roto o \frac{\left(-6-\frac{1}{3}i\right)\left(3+\frac{1}{3}i\right)}{\left(3-\frac{1}{3}i\right)\left(3+\frac{1}{3}i\right)}.
x=-\frac{161}{82}-\frac{27}{82}i
Whakawehea te -\frac{161}{9}-3i ki te \frac{82}{9}, kia riro ko -\frac{161}{82}-\frac{27}{82}i.
f=\frac{1}{3}i x=-\frac{161}{82}-\frac{27}{82}i g=i h=i j=i
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}