Whakaoti mō x, y, z, a, b, c, d
d=15
Tohaina
Kua tāruatia ki te papatopenga
x=\frac{30}{6}
Whakaarohia te whārite tuatahi. Whakawehea ngā taha e rua ki te 6.
x=5
Whakawehea te 30 ki te 6, kia riro ko 5.
2y+2\times 5=20
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
2y+10=20
Whakareatia te 2 ki te 5, ka 10.
2y=20-10
Tangohia te 10 mai i ngā taha e rua.
2y=10
Tangohia te 10 i te 20, ka 10.
y=\frac{10}{2}
Whakawehea ngā taha e rua ki te 2.
y=5
Whakawehea te 10 ki te 2, kia riro ko 5.
4z+5=13
Whakaarohia te whārite tuatoru. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
4z=13-5
Tangohia te 5 mai i ngā taha e rua.
4z=8
Tangohia te 5 i te 13, ka 8.
z=\frac{8}{4}
Whakawehea ngā taha e rua ki te 4.
z=2
Whakawehea te 8 ki te 4, kia riro ko 2.
a=5+5\times 2
Whakaarohia te whārite tuawhā. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
a=5+10
Whakareatia te 5 ki te 2, ka 10.
a=15
Tāpirihia te 5 ki te 10, ka 15.
b=15
Whakaarohia te whārite tuarima. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
c=15
Whakaarohia te whārite (6). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
d=15
Whakaarohia te whārite (7). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
x=5 y=5 z=2 a=15 b=15 c=15 d=15
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}