Whakaoti mō p, q, r, s, t, u, v, w, x
x=3
Tohaina
Kua tāruatia ki te papatopenga
5p+4=18-2+p
Whakaarohia te whārite tuatahi. Hei kimi i te tauaro o 2-p, kimihia te tauaro o ia taurangi.
5p+4=16+p
Tangohia te 2 i te 18, ka 16.
5p+4-p=16
Tangohia te p mai i ngā taha e rua.
4p+4=16
Pahekotia te 5p me -p, ka 4p.
4p=16-4
Tangohia te 4 mai i ngā taha e rua.
4p=12
Tangohia te 4 i te 16, ka 12.
p=\frac{12}{4}
Whakawehea ngā taha e rua ki te 4.
p=3
Whakawehea te 12 ki te 4, kia riro ko 3.
q=3
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
r=3
Whakaarohia te whārite tuatoru. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
s=3
Whakaarohia te whārite tuawhā. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
t=3
Whakaarohia te whārite tuarima. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
u=3
Whakaarohia te whārite (6). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
v=3
Whakaarohia te whārite (7). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
w=3
Whakaarohia te whārite (8). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
x=3
Whakaarohia te whārite (9). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
p=3 q=3 r=3 s=3 t=3 u=3 v=3 w=3 x=3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}