Whakaoti mō x, y, z
z = -\frac{38503}{175} = -220\frac{3}{175} \approx -220.017142857
Tohaina
Kua tāruatia ki te papatopenga
35x-265+6=3
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te 7x-53.
35x-259=3
Tāpirihia te -265 ki te 6, ka -259.
35x=3+259
Me tāpiri te 259 ki ngā taha e rua.
35x=262
Tāpirihia te 3 ki te 259, ka 262.
x=\frac{262}{35}
Whakawehea ngā taha e rua ki te 35.
y=\left(-7\times \frac{262}{35}-3\right)\left(-11+2\times \frac{262}{35}\right)
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
y=\left(-\frac{262}{5}-3\right)\left(-11+2\times \frac{262}{35}\right)
Whakareatia te -7 ki te \frac{262}{35}, ka -\frac{262}{5}.
y=-\frac{277}{5}\left(-11+2\times \frac{262}{35}\right)
Tangohia te 3 i te -\frac{262}{5}, ka -\frac{277}{5}.
y=-\frac{277}{5}\left(-11+\frac{524}{35}\right)
Whakareatia te 2 ki te \frac{262}{35}, ka \frac{524}{35}.
y=-\frac{277}{5}\times \frac{139}{35}
Tāpirihia te -11 ki te \frac{524}{35}, ka \frac{139}{35}.
y=-\frac{38503}{175}
Whakareatia te -\frac{277}{5} ki te \frac{139}{35}, ka -\frac{38503}{175}.
z=-\frac{38503}{175}
Whakaarohia te whārite tuatoru. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
x=\frac{262}{35} y=-\frac{38503}{175} z=-\frac{38503}{175}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}