Whakaoti mō x, y, z
z=0
Tohaina
Kua tāruatia ki te papatopenga
4x=1
Whakaarohia te whārite tuatahi. Me tāpiri te 1 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x=\frac{1}{4}
Whakawehea ngā taha e rua ki te 4.
y=\left(4\times \frac{1}{4}-1\right)\left(\frac{1}{4}+5\right)-\left(4\times \frac{1}{4}-1\right)\left(2\times \frac{1}{4}+3\right)
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
y=\left(1-1\right)\left(\frac{1}{4}+5\right)-\left(4\times \frac{1}{4}-1\right)\left(2\times \frac{1}{4}+3\right)
Whakareatia te 4 ki te \frac{1}{4}, ka 1.
y=0\left(\frac{1}{4}+5\right)-\left(4\times \frac{1}{4}-1\right)\left(2\times \frac{1}{4}+3\right)
Tangohia te 1 i te 1, ka 0.
y=0\times \frac{21}{4}-\left(4\times \frac{1}{4}-1\right)\left(2\times \frac{1}{4}+3\right)
Tāpirihia te \frac{1}{4} ki te 5, ka \frac{21}{4}.
y=0-\left(4\times \frac{1}{4}-1\right)\left(2\times \frac{1}{4}+3\right)
Whakareatia te 0 ki te \frac{21}{4}, ka 0.
y=0-\left(1-1\right)\left(2\times \frac{1}{4}+3\right)
Whakareatia te 4 ki te \frac{1}{4}, ka 1.
y=0-0\left(2\times \frac{1}{4}+3\right)
Tangohia te 1 i te 1, ka 0.
y=0-0\left(\frac{1}{2}+3\right)
Whakareatia te 2 ki te \frac{1}{4}, ka \frac{1}{2}.
y=0-0\times \frac{7}{2}
Tāpirihia te \frac{1}{2} ki te 3, ka \frac{7}{2}.
y=0-0
Whakareatia te 0 ki te \frac{7}{2}, ka 0.
y=0
Mā te tango i te 0 i a ia ake anō ka toe ko te 0.
z=0
Whakaarohia te whārite tuatoru. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
x=\frac{1}{4} y=0 z=0
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}