\left. \begin{array} { l } { 4 {(3 m + 2)} - 5 {(6 m - 1)} = 9 {(m - 8)} - 6 {(7 m - 4)} }\\ { n = 4 m }\\ { o = n }\\ { p = o }\\ { q = p }\\ { r = q }\\ { s = r }\\ { t = s }\\ { u = t }\\ { v = u }\\ { w = v }\\ { x = w }\\ { \text{Solve for } y \text{ where} } \\ { y = x } \end{array} \right.
Whakaoti mō m, n, o, p, q, r, s, t, u, v, w, x, y
y = -\frac{244}{15} = -16\frac{4}{15} \approx -16.266666667
Tohaina
Kua tāruatia ki te papatopenga
12m+8-5\left(6m-1\right)=9\left(m-8\right)-6\left(7m-4\right)
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 3m+2.
12m+8-30m+5=9\left(m-8\right)-6\left(7m-4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te 6m-1.
-18m+8+5=9\left(m-8\right)-6\left(7m-4\right)
Pahekotia te 12m me -30m, ka -18m.
-18m+13=9\left(m-8\right)-6\left(7m-4\right)
Tāpirihia te 8 ki te 5, ka 13.
-18m+13=9m-72-6\left(7m-4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 9 ki te m-8.
-18m+13=9m-72-42m+24
Whakamahia te āhuatanga tohatoha hei whakarea te -6 ki te 7m-4.
-18m+13=-33m-72+24
Pahekotia te 9m me -42m, ka -33m.
-18m+13=-33m-48
Tāpirihia te -72 ki te 24, ka -48.
-18m+13+33m=-48
Me tāpiri te 33m ki ngā taha e rua.
15m+13=-48
Pahekotia te -18m me 33m, ka 15m.
15m=-48-13
Tangohia te 13 mai i ngā taha e rua.
15m=-61
Tangohia te 13 i te -48, ka -61.
m=-\frac{61}{15}
Whakawehea ngā taha e rua ki te 15.
n=4\left(-\frac{61}{15}\right)
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
n=-\frac{244}{15}
Whakareatia te 4 ki te -\frac{61}{15}, ka -\frac{244}{15}.
o=-\frac{244}{15}
Whakaarohia te whārite tuatoru. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
p=-\frac{244}{15}
Whakaarohia te whārite tuawhā. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
q=-\frac{244}{15}
Whakaarohia te whārite tuarima. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
r=-\frac{244}{15}
Whakaarohia te whārite (6). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
s=-\frac{244}{15}
Whakaarohia te whārite (7). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
t=-\frac{244}{15}
Whakaarohia te whārite (8). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
u=-\frac{244}{15}
Whakaarohia te whārite (9). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
v=-\frac{244}{15}
Whakaarohia te whārite (10). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
w=-\frac{244}{15}
Whakaarohia te whārite (11). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
x=-\frac{244}{15}
Whakaarohia te whārite (12). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
y=-\frac{244}{15}
Whakaarohia te whārite (13). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
m=-\frac{61}{15} n=-\frac{244}{15} o=-\frac{244}{15} p=-\frac{244}{15} q=-\frac{244}{15} r=-\frac{244}{15} s=-\frac{244}{15} t=-\frac{244}{15} u=-\frac{244}{15} v=-\frac{244}{15} w=-\frac{244}{15} x=-\frac{244}{15} y=-\frac{244}{15}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}