Whakaoti mō y, z, a, b, c, d
d = -\frac{14}{3} = -4\frac{2}{3} \approx -4.666666667
Tohaina
Kua tāruatia ki te papatopenga
-3y=-4-3
Whakaarohia te whārite tuatahi. Tangohia te 3 mai i ngā taha e rua.
-3y=-7
Tangohia te 3 i te -4, ka -7.
y=\frac{-7}{-3}
Whakawehea ngā taha e rua ki te -3.
y=\frac{7}{3}
Ka taea te hautanga \frac{-7}{-3} te whakamāmā ki te \frac{7}{3} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
z=-2\times \frac{7}{3}
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
z=-\frac{14}{3}
Whakareatia te -2 ki te \frac{7}{3}, ka -\frac{14}{3}.
a=-\frac{14}{3}
Whakaarohia te whārite tuatoru. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
b=-\frac{14}{3}
Whakaarohia te whārite tuawhā. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
c=-\frac{14}{3}
Whakaarohia te whārite tuarima. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
d=-\frac{14}{3}
Whakaarohia te whārite (6). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
y=\frac{7}{3} z=-\frac{14}{3} a=-\frac{14}{3} b=-\frac{14}{3} c=-\frac{14}{3} d=-\frac{14}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}