Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y, z, a, b, c
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

216-9\left(7x+2\right)=144x+8\left(5x+1\right)
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 72, arā, te tauraro pātahi he tino iti rawa te kitea o 8,9.
216-63x-18=144x+8\left(5x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -9 ki te 7x+2.
198-63x=144x+8\left(5x+1\right)
Tangohia te 18 i te 216, ka 198.
198-63x=144x+40x+8
Whakamahia te āhuatanga tohatoha hei whakarea te 8 ki te 5x+1.
198-63x=184x+8
Pahekotia te 144x me 40x, ka 184x.
198-63x-184x=8
Tangohia te 184x mai i ngā taha e rua.
198-247x=8
Pahekotia te -63x me -184x, ka -247x.
-247x=8-198
Tangohia te 198 mai i ngā taha e rua.
-247x=-190
Tangohia te 198 i te 8, ka -190.
x=\frac{-190}{-247}
Whakawehea ngā taha e rua ki te -247.
x=\frac{10}{13}
Whakahekea te hautanga \frac{-190}{-247} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -19.
y=\frac{10}{13}+3\times \frac{10}{13}-\frac{10}{13}+1
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
y=\frac{10}{13}+\frac{30}{13}-\frac{10}{13}+1
Whakareatia te 3 ki te \frac{10}{13}, ka \frac{30}{13}.
y=\frac{40}{13}-\frac{10}{13}+1
Tāpirihia te \frac{10}{13} ki te \frac{30}{13}, ka \frac{40}{13}.
y=\frac{30}{13}+1
Tangohia te \frac{10}{13} i te \frac{40}{13}, ka \frac{30}{13}.
y=\frac{43}{13}
Tāpirihia te \frac{30}{13} ki te 1, ka \frac{43}{13}.
z=\frac{43}{13}
Whakaarohia te whārite tuatoru. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
a=\frac{43}{13}
Whakaarohia te whārite tuawhā. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
b=\frac{43}{13}
Whakaarohia te whārite tuarima. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
c=\frac{43}{13}
Whakaarohia te whārite (6). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
x=\frac{10}{13} y=\frac{43}{13} z=\frac{43}{13} a=\frac{43}{13} b=\frac{43}{13} c=\frac{43}{13}
Kua oti te pūnaha te whakatau.