Whakaoti mō A, a, b
b=-66
Tohaina
Kua tāruatia ki te papatopenga
258=0A\times 10^{2}+A\times 10
Whakaarohia te whārite tuatahi. Whakareatia te 0 ki te 5, ka 0.
258=0A\times 100+A\times 10
Tātaihia te 10 mā te pū o 2, kia riro ko 100.
258=0A+A\times 10
Whakareatia te 0 ki te 100, ka 0.
258=0+A\times 10
Ko te tau i whakarea ki te kore ka hua ko te kore.
258=A\times 10
Ko te tau i tāpiria he kore ka hua koia tonu.
A\times 10=258
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
A=\frac{258}{10}
Whakawehea ngā taha e rua ki te 10.
A=\frac{129}{5}
Whakahekea te hautanga \frac{258}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
a=6-2\times 36
Whakaarohia te whārite tuarua. Tātaihia te 6 mā te pū o 2, kia riro ko 36.
a=6-72
Whakareatia te 2 ki te 36, ka 72.
a=-66
Tangohia te 72 i te 6, ka -66.
b=-66
Whakaarohia te whārite tuatoru. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
A=\frac{129}{5} a=-66 b=-66
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}