Whakaoti mō x, y, z
x=a+3
y=2a+5
z=a
Tohaina
Kua tāruatia ki te papatopenga
z=-5x+3y 2x-y=1 a=z
Me raupapa anō ngā whārite.
a=-5x+3y
Whakakapia te -5x+3y mō te z i te whārite a=z.
y=2x-1 x=-\frac{1}{5}a+\frac{3}{5}y
Me whakaoti te whārite tuarua mō y me te whārite tuatoru mō x.
x=-\frac{1}{5}a+\frac{3}{5}\left(2x-1\right)
Whakakapia te 2x-1 mō te y i te whārite x=-\frac{1}{5}a+\frac{3}{5}y.
x=3+a
Me whakaoti te x=-\frac{1}{5}a+\frac{3}{5}\left(2x-1\right) mō x.
y=2\left(3+a\right)-1
Whakakapia te 3+a mō te x i te whārite y=2x-1.
y=5+2a
Tātaitia te y i te y=2\left(3+a\right)-1.
z=-5\left(3+a\right)+3\left(5+2a\right)
Whakakapia te 5+2a mō te y me te 3+a mō x i te whārite z=-5x+3y.
z=a
Tātaitia te z i te z=-5\left(3+a\right)+3\left(5+2a\right).
x=3+a y=5+2a z=a
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}