Whakaoti mō x, y, z, a, b
b=18
Tohaina
Kua tāruatia ki te papatopenga
2x-2+3=5x-29
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-1.
2x+1=5x-29
Tāpirihia te -2 ki te 3, ka 1.
2x+1-5x=-29
Tangohia te 5x mai i ngā taha e rua.
-3x+1=-29
Pahekotia te 2x me -5x, ka -3x.
-3x=-29-1
Tangohia te 1 mai i ngā taha e rua.
-3x=-30
Tangohia te 1 i te -29, ka -30.
x=\frac{-30}{-3}
Whakawehea ngā taha e rua ki te -3.
x=10
Whakawehea te -30 ki te -3, kia riro ko 10.
y=10+1\times 10-2
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
y=10+10-2
Whakareatia te 1 ki te 10, ka 10.
y=20-2
Tāpirihia te 10 ki te 10, ka 20.
y=18
Tangohia te 2 i te 20, ka 18.
z=18
Whakaarohia te whārite tuatoru. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
a=18
Whakaarohia te whārite tuawhā. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
b=18
Whakaarohia te whārite tuarima. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
x=10 y=18 z=18 a=18 b=18
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}