Whakaoti mō z, j, k, l, m
m=2i
Tohaina
Kua tāruatia ki te papatopenga
z^{2}-2iz+3=z\left(z-i\right)
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tuaritanga hei whakarea te z+i ki te z-3i ka whakakotahi i ngā kupu rite.
z^{2}-2iz+3=z^{2}-iz
Whakamahia te āhuatanga tohatoha hei whakarea te z ki te z-i.
z^{2}-2iz+3-z^{2}=-iz
Tangohia te z^{2} mai i ngā taha e rua.
-2iz+3=-iz
Pahekotia te z^{2} me -z^{2}, ka 0.
-2iz+3-\left(-iz\right)=0
Tangohia te -iz mai i ngā taha e rua.
-iz+3=0
Pahekotia te -2iz me iz, ka -iz.
-iz=-3
Tangohia te 3 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
z=\frac{-3}{-i}
Whakawehea ngā taha e rua ki te -i.
z=\frac{-3i}{1}
Me whakarea tahi te taurunga me te tauraro o \frac{-3}{-i} ki te wae pohewa i.
z=-3i
Whakawehea te -3i ki te 1, kia riro ko -3i.
j=2i
Whakaarohia te whārite tuarua. Tātaihia te 1+i mā te pū o 2, kia riro ko 2i.
k=2i
Whakaarohia te whārite tuatoru. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
l=2i
Whakaarohia te whārite tuawhā. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
m=2i
Whakaarohia te whārite tuarima. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
z=-3i j=2i k=2i l=2i m=2i
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}