Whakaoti mō x, y, z
z=4
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-4x-21-2\left(x+1\right)\left(x-4\right)=\left(-\left(x-1\right)\right)\left(x+3\right)
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tuaritanga hei whakarea te x-7 ki te x+3 ka whakakotahi i ngā kupu rite.
x^{2}-4x-21-2\left(x+1\right)\left(x-4\right)=\left(-x+1\right)\left(x+3\right)
Hei kimi i te tauaro o x-1, kimihia te tauaro o ia taurangi.
x^{2}-4x-21-2\left(x+1\right)\left(x-4\right)=-x^{2}-2x+3
Whakamahia te āhuatanga tuaritanga hei whakarea te -x+1 ki te x+3 ka whakakotahi i ngā kupu rite.
x^{2}-4x-21-2\left(x+1\right)\left(x-4\right)+x^{2}=-2x+3
Me tāpiri te x^{2} ki ngā taha e rua.
x^{2}-4x-21-2\left(x+1\right)\left(x-4\right)+x^{2}+2x=3
Me tāpiri te 2x ki ngā taha e rua.
x^{2}-4x-21+\left(-2x-2\right)\left(x-4\right)+x^{2}+2x=3
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x+1.
x^{2}-4x-21-2x^{2}+6x+8+x^{2}+2x=3
Whakamahia te āhuatanga tuaritanga hei whakarea te -2x-2 ki te x-4 ka whakakotahi i ngā kupu rite.
-x^{2}-4x-21+6x+8+x^{2}+2x=3
Pahekotia te x^{2} me -2x^{2}, ka -x^{2}.
-x^{2}+2x-21+8+x^{2}+2x=3
Pahekotia te -4x me 6x, ka 2x.
-x^{2}+2x-13+x^{2}+2x=3
Tāpirihia te -21 ki te 8, ka -13.
2x-13+2x=3
Pahekotia te -x^{2} me x^{2}, ka 0.
4x-13=3
Pahekotia te 2x me 2x, ka 4x.
4x=3+13
Me tāpiri te 13 ki ngā taha e rua.
4x=16
Tāpirihia te 3 ki te 13, ka 16.
x=\frac{16}{4}
Whakawehea ngā taha e rua ki te 4.
x=4
Whakawehea te 16 ki te 4, kia riro ko 4.
y=4
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
z=4
Whakaarohia te whārite tuatoru. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
x=4 y=4 z=4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}