Whakaoti mō x, y, z, a, b
b = \frac{40}{3} = 13\frac{1}{3} \approx 13.333333333
Tohaina
Kua tāruatia ki te papatopenga
72=6\left(x+5\right)-\left(3x-2\right)
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 2,12.
72=6x+30-\left(3x-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te x+5.
72=6x+30-3x+2
Hei kimi i te tauaro o 3x-2, kimihia te tauaro o ia taurangi.
72=3x+30+2
Pahekotia te 6x me -3x, ka 3x.
72=3x+32
Tāpirihia te 30 ki te 2, ka 32.
3x+32=72
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3x=72-32
Tangohia te 32 mai i ngā taha e rua.
3x=40
Tangohia te 32 i te 72, ka 40.
x=\frac{40}{3}
Whakawehea ngā taha e rua ki te 3.
y=\frac{40}{3}
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
z=\frac{40}{3}
Whakaarohia te whārite tuatoru. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
a=\frac{40}{3}
Whakaarohia te whārite tuawhā. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
b=\frac{40}{3}
Whakaarohia te whārite tuarima. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
x=\frac{40}{3} y=\frac{40}{3} z=\frac{40}{3} a=\frac{40}{3} b=\frac{40}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}