Whakaoti mō x, y, z, a, b
b=\pi \approx 3.141592654
Tohaina
Kua tāruatia ki te papatopenga
4x^{2}+14x+6-7\left(x-2\right)=4\left(x+1\right)\left(x-1\right)-9x
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tuaritanga hei whakarea te 2x+1 ki te 2x+6 ka whakakotahi i ngā kupu rite.
4x^{2}+14x+6-7x+14=4\left(x+1\right)\left(x-1\right)-9x
Whakamahia te āhuatanga tohatoha hei whakarea te -7 ki te x-2.
4x^{2}+7x+6+14=4\left(x+1\right)\left(x-1\right)-9x
Pahekotia te 14x me -7x, ka 7x.
4x^{2}+7x+20=4\left(x+1\right)\left(x-1\right)-9x
Tāpirihia te 6 ki te 14, ka 20.
4x^{2}+7x+20=\left(4x+4\right)\left(x-1\right)-9x
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x+1.
4x^{2}+7x+20=4x^{2}-4-9x
Whakamahia te āhuatanga tuaritanga hei whakarea te 4x+4 ki te x-1 ka whakakotahi i ngā kupu rite.
4x^{2}+7x+20-4x^{2}=-4-9x
Tangohia te 4x^{2} mai i ngā taha e rua.
7x+20=-4-9x
Pahekotia te 4x^{2} me -4x^{2}, ka 0.
7x+20+9x=-4
Me tāpiri te 9x ki ngā taha e rua.
16x+20=-4
Pahekotia te 7x me 9x, ka 16x.
16x=-4-20
Tangohia te 20 mai i ngā taha e rua.
16x=-24
Tangohia te 20 i te -4, ka -24.
x=\frac{-24}{16}
Whakawehea ngā taha e rua ki te 16.
x=-\frac{3}{2}
Whakahekea te hautanga \frac{-24}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
x=-\frac{3}{2} y=\pi z=\pi a=\pi b=\pi
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}