Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y, z, a, b
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

7\left(x-3\right)+5\left(x-4\right)=210-\left(2x-1\right)
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 35, arā, te tauraro pātahi he tino iti rawa te kitea o 5,7,35.
7x-21+5\left(x-4\right)=210-\left(2x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 7 ki te x-3.
7x-21+5x-20=210-\left(2x-1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x-4.
12x-21-20=210-\left(2x-1\right)
Pahekotia te 7x me 5x, ka 12x.
12x-41=210-\left(2x-1\right)
Tangohia te 20 i te -21, ka -41.
12x-41=210-2x+1
Hei kimi i te tauaro o 2x-1, kimihia te tauaro o ia taurangi.
12x-41=211-2x
Tāpirihia te 210 ki te 1, ka 211.
12x-41+2x=211
Me tāpiri te 2x ki ngā taha e rua.
14x-41=211
Pahekotia te 12x me 2x, ka 14x.
14x=211+41
Me tāpiri te 41 ki ngā taha e rua.
14x=252
Tāpirihia te 211 ki te 41, ka 252.
x=\frac{252}{14}
Whakawehea ngā taha e rua ki te 14.
x=18
Whakawehea te 252 ki te 14, kia riro ko 18.
y=18+5
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
y=23
Tāpirihia te 18 ki te 5, ka 23.
z=2\times 18+6
Whakaarohia te whārite tuatoru. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
z=36+6
Whakareatia te 2 ki te 18, ka 36.
z=42
Tāpirihia te 36 ki te 6, ka 42.
a=23
Whakaarohia te whārite tuawhā. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
b=42
Whakaarohia te whārite tuarima. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
x=18 y=23 z=42 a=23 b=42
Kua oti te pūnaha te whakatau.