Whakaoti mō p, q, r, s, t, u
u=6
Tohaina
Kua tāruatia ki te papatopenga
3p-2\left(p-3\right)=12
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 12, arā, te tauraro pātahi he tino iti rawa te kitea o 4,6.
3p-2p+6=12
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te p-3.
p+6=12
Pahekotia te 3p me -2p, ka p.
p=12-6
Tangohia te 6 mai i ngā taha e rua.
p=6
Tangohia te 6 i te 12, ka 6.
q=6
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
r=6
Whakaarohia te whārite tuatoru. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
s=6
Whakaarohia te whārite tuawhā. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
t=6
Whakaarohia te whārite tuarima. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
u=6
Whakaarohia te whārite (6). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
p=6 q=6 r=6 s=6 t=6 u=6
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}