Whakaoti mō x, y, z, a
a=333
Tohaina
Kua tāruatia ki te papatopenga
x\left(2x+3\right)\left(7x+2\right)+\left(4x^{2}-9\right)\left(5x+4\right)=x\left(34x^{2}+43x-2\right)+\left(2x+3\right)\left(10-x\right)
Whakaarohia te whārite tuatahi. Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -\frac{3}{2},0,\frac{3}{2} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(2x-3\right)\left(2x+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o 2x-3,x,4x^{2}-9,2x^{2}-3x.
\left(2x^{2}+3x\right)\left(7x+2\right)+\left(4x^{2}-9\right)\left(5x+4\right)=x\left(34x^{2}+43x-2\right)+\left(2x+3\right)\left(10-x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 2x+3.
14x^{3}+25x^{2}+6x+\left(4x^{2}-9\right)\left(5x+4\right)=x\left(34x^{2}+43x-2\right)+\left(2x+3\right)\left(10-x\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x^{2}+3x ki te 7x+2 ka whakakotahi i ngā kupu rite.
14x^{3}+25x^{2}+6x+20x^{3}+16x^{2}-45x-36=x\left(34x^{2}+43x-2\right)+\left(2x+3\right)\left(10-x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4x^{2}-9 ki te 5x+4.
34x^{3}+25x^{2}+6x+16x^{2}-45x-36=x\left(34x^{2}+43x-2\right)+\left(2x+3\right)\left(10-x\right)
Pahekotia te 14x^{3} me 20x^{3}, ka 34x^{3}.
34x^{3}+41x^{2}+6x-45x-36=x\left(34x^{2}+43x-2\right)+\left(2x+3\right)\left(10-x\right)
Pahekotia te 25x^{2} me 16x^{2}, ka 41x^{2}.
34x^{3}+41x^{2}-39x-36=x\left(34x^{2}+43x-2\right)+\left(2x+3\right)\left(10-x\right)
Pahekotia te 6x me -45x, ka -39x.
34x^{3}+41x^{2}-39x-36=34x^{3}+43x^{2}-2x+\left(2x+3\right)\left(10-x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 34x^{2}+43x-2.
34x^{3}+41x^{2}-39x-36=34x^{3}+43x^{2}-2x+17x-2x^{2}+30
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x+3 ki te 10-x ka whakakotahi i ngā kupu rite.
34x^{3}+41x^{2}-39x-36=34x^{3}+43x^{2}+15x-2x^{2}+30
Pahekotia te -2x me 17x, ka 15x.
34x^{3}+41x^{2}-39x-36=34x^{3}+41x^{2}+15x+30
Pahekotia te 43x^{2} me -2x^{2}, ka 41x^{2}.
34x^{3}+41x^{2}-39x-36-34x^{3}=41x^{2}+15x+30
Tangohia te 34x^{3} mai i ngā taha e rua.
41x^{2}-39x-36=41x^{2}+15x+30
Pahekotia te 34x^{3} me -34x^{3}, ka 0.
41x^{2}-39x-36-41x^{2}=15x+30
Tangohia te 41x^{2} mai i ngā taha e rua.
-39x-36=15x+30
Pahekotia te 41x^{2} me -41x^{2}, ka 0.
-39x-36-15x=30
Tangohia te 15x mai i ngā taha e rua.
-54x-36=30
Pahekotia te -39x me -15x, ka -54x.
-54x=30+36
Me tāpiri te 36 ki ngā taha e rua.
-54x=66
Tāpirihia te 30 ki te 36, ka 66.
x=\frac{66}{-54}
Whakawehea ngā taha e rua ki te -54.
x=-\frac{11}{9}
Whakahekea te hautanga \frac{66}{-54} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=-\frac{11}{9} y=333 z=333 a=333
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}