Whakaoti mō x, y, z, a, b, c
c=2
Tohaina
Kua tāruatia ki te papatopenga
3\times 3\left(x+1\right)+2\times 5\left(x+1\right)=24
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,3.
9\left(x+1\right)+2\times 5\left(x+1\right)=24
Whakareatia te 3 ki te 3, ka 9.
9x+9+2\times 5\left(x+1\right)=24
Whakamahia te āhuatanga tohatoha hei whakarea te 9 ki te x+1.
9x+9+10\left(x+1\right)=24
Whakareatia te 2 ki te 5, ka 10.
9x+9+10x+10=24
Whakamahia te āhuatanga tohatoha hei whakarea te 10 ki te x+1.
19x+9+10=24
Pahekotia te 9x me 10x, ka 19x.
19x+19=24
Tāpirihia te 9 ki te 10, ka 19.
19x=24-19
Tangohia te 19 mai i ngā taha e rua.
19x=5
Tangohia te 19 i te 24, ka 5.
x=\frac{5}{19}
Whakawehea ngā taha e rua ki te 19.
x=\frac{5}{19} y=2 z=2 a=2 b=2 c=2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}