Whakaoti mō x, y, z, a, b, c, d
d = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Tohaina
Kua tāruatia ki te papatopenga
x-\frac{2}{3}=0
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua ki te 2, te tau utu o \frac{1}{2}. Ko te tau i whakarea ki te kore ka hua ko te kore.
x=\frac{2}{3}
Me tāpiri te \frac{2}{3} ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
y=\frac{2}{\frac{1\times 2+1}{2}}
Whakaarohia te whārite tuarua. Whakareatia te 2 ki te 1, ka 2.
y=\frac{2}{\frac{2+1}{2}}
Whakareatia te 1 ki te 2, ka 2.
y=\frac{2}{\frac{3}{2}}
Tāpirihia te 2 ki te 1, ka 3.
y=2\times \frac{2}{3}
Whakawehe 2 ki te \frac{3}{2} mā te whakarea 2 ki te tau huripoki o \frac{3}{2}.
y=\frac{4}{3}
Whakareatia te 2 ki te \frac{2}{3}, ka \frac{4}{3}.
z=\frac{4}{3}
Whakaarohia te whārite tuatoru. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
a=\frac{4}{3}
Whakaarohia te whārite tuawhā. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
b=\frac{4}{3}
Whakaarohia te whārite tuarima. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
c=\frac{4}{3}
Whakaarohia te whārite (6). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
d=\frac{4}{3}
Whakaarohia te whārite (7). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
x=\frac{2}{3} y=\frac{4}{3} z=\frac{4}{3} a=\frac{4}{3} b=\frac{4}{3} c=\frac{4}{3} d=\frac{4}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}