Whakaoti mō x, y, z
z=2
Tohaina
Kua tāruatia ki te papatopenga
3\left(1\times 5x+1\right)+0\times 2x=6
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,6.
3\left(5x+1\right)+0\times 2x=6
Whakareatia te 1 ki te 5, ka 5.
15x+3+0\times 2x=6
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 5x+1.
15x+3+0x=6
Whakareatia te 0 ki te 2, ka 0.
15x+3+0=6
Ko te tau i whakarea ki te kore ka hua ko te kore.
15x+3=6
Tāpirihia te 3 ki te 0, ka 3.
15x=6-3
Tangohia te 3 mai i ngā taha e rua.
15x=3
Tangohia te 3 i te 6, ka 3.
x=\frac{3}{15}
Whakawehea ngā taha e rua ki te 15.
x=\frac{1}{5}
Whakahekea te hautanga \frac{3}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x=\frac{1}{5} y=2 z=2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}