\left. \begin{array} { l } { \frac{0.5}{0.15} = \frac{n}{1.2} }\\ { o = n }\\ { p = o }\\ { q = p }\\ { r = q }\\ { s = r }\\ { t = s }\\ { u = t }\\ { v = u }\\ { w = v }\\ { \text{Solve for } x \text{ where} } \\ { x = w } \end{array} \right.
Whakaoti mō n, o, p, q, r, s, t, u, v, w, x
x=4
Tohaina
Kua tāruatia ki te papatopenga
\frac{50}{15}=\frac{n}{1.2}
Whakaarohia te whārite tuatahi. Whakarohaina te \frac{0.5}{0.15} mā te whakarea i te taurunga me te tauraro ki te 100.
\frac{10}{3}=\frac{n}{1.2}
Whakahekea te hautanga \frac{50}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{n}{1.2}=\frac{10}{3}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
n=\frac{10}{3}\times 1.2
Me whakarea ngā taha e rua ki te 1.2.
n=4
Whakareatia te \frac{10}{3} ki te 1.2, ka 4.
o=4
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
p=4
Whakaarohia te whārite tuatoru. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
q=4
Whakaarohia te whārite tuawhā. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
r=4
Whakaarohia te whārite tuarima. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
s=4
Whakaarohia te whārite (6). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
t=4
Whakaarohia te whārite (7). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
u=4
Whakaarohia te whārite (8). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
v=4
Whakaarohia te whārite (9). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
w=4
Whakaarohia te whārite (10). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
x=4
Whakaarohia te whārite (11). Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
n=4 o=4 p=4 q=4 r=4 s=4 t=4 u=4 v=4 w=4 x=4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}