Tīpoka ki ngā ihirangi matua
Whakaoti mō y, x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y-3x=10-15
Whakaarohia te whārite tuatahi. Tangohia te 15 mai i ngā taha e rua.
y-3x=-5
Tangohia te 15 i te 10, ka -5.
6-4x-y=0
Whakaarohia te whārite tuarua. Tangohia te y mai i ngā taha e rua.
-4x-y=-6
Tangohia te 6 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
y-3x=-5,-y-4x=-6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y-3x=-5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=3x-5
Me tāpiri 3x ki ngā taha e rua o te whārite.
-\left(3x-5\right)-4x=-6
Whakakapia te 3x-5 mō te y ki tērā atu whārite, -y-4x=-6.
-3x+5-4x=-6
Whakareatia -1 ki te 3x-5.
-7x+5=-6
Tāpiri -3x ki te -4x.
-7x=-11
Me tango 5 mai i ngā taha e rua o te whārite.
x=\frac{11}{7}
Whakawehea ngā taha e rua ki te -7.
y=3\times \frac{11}{7}-5
Whakaurua te \frac{11}{7} mō x ki y=3x-5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=\frac{33}{7}-5
Whakareatia 3 ki te \frac{11}{7}.
y=-\frac{2}{7}
Tāpiri -5 ki te \frac{33}{7}.
y=-\frac{2}{7},x=\frac{11}{7}
Kua oti te pūnaha te whakatau.
y-3x=10-15
Whakaarohia te whārite tuatahi. Tangohia te 15 mai i ngā taha e rua.
y-3x=-5
Tangohia te 15 i te 10, ka -5.
6-4x-y=0
Whakaarohia te whārite tuarua. Tangohia te y mai i ngā taha e rua.
-4x-y=-6
Tangohia te 6 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
y-3x=-5,-y-4x=-6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-3\\-1&-4\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-5\\-6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-3\\-1&-4\end{matrix}\right))\left(\begin{matrix}1&-3\\-1&-4\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\-1&-4\end{matrix}\right))\left(\begin{matrix}-5\\-6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-3\\-1&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\-1&-4\end{matrix}\right))\left(\begin{matrix}-5\\-6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\-1&-4\end{matrix}\right))\left(\begin{matrix}-5\\-6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{-4-\left(-3\left(-1\right)\right)}&-\frac{-3}{-4-\left(-3\left(-1\right)\right)}\\-\frac{-1}{-4-\left(-3\left(-1\right)\right)}&\frac{1}{-4-\left(-3\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}-5\\-6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{7}&-\frac{3}{7}\\-\frac{1}{7}&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}-5\\-6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{7}\left(-5\right)-\frac{3}{7}\left(-6\right)\\-\frac{1}{7}\left(-5\right)-\frac{1}{7}\left(-6\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{7}\\\frac{11}{7}\end{matrix}\right)
Mahia ngā tātaitanga.
y=-\frac{2}{7},x=\frac{11}{7}
Tangohia ngā huānga poukapa y me x.
y-3x=10-15
Whakaarohia te whārite tuatahi. Tangohia te 15 mai i ngā taha e rua.
y-3x=-5
Tangohia te 15 i te 10, ka -5.
6-4x-y=0
Whakaarohia te whārite tuarua. Tangohia te y mai i ngā taha e rua.
-4x-y=-6
Tangohia te 6 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
y-3x=-5,-y-4x=-6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-y-\left(-3x\right)=-\left(-5\right),-y-4x=-6
Kia ōrite ai a y me -y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-y+3x=5,-y-4x=-6
Whakarūnātia.
-y+y+3x+4x=5+6
Me tango -y-4x=-6 mai i -y+3x=5 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3x+4x=5+6
Tāpiri -y ki te y. Ka whakakore atu ngā kupu -y me y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
7x=5+6
Tāpiri 3x ki te 4x.
7x=11
Tāpiri 5 ki te 6.
x=\frac{11}{7}
Whakawehea ngā taha e rua ki te 7.
-y-4\times \frac{11}{7}=-6
Whakaurua te \frac{11}{7} mō x ki -y-4x=-6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
-y-\frac{44}{7}=-6
Whakareatia -4 ki te \frac{11}{7}.
-y=\frac{2}{7}
Me tāpiri \frac{44}{7} ki ngā taha e rua o te whārite.
y=-\frac{2}{7}
Whakawehea ngā taha e rua ki te -1.
y=-\frac{2}{7},x=\frac{11}{7}
Kua oti te pūnaha te whakatau.