Whakaoti mō y, x
x=2
y=-5
Graph
Tohaina
Kua tāruatia ki te papatopenga
y+3x=1
Whakaarohia te whārite tuatahi. Me tāpiri te 3x ki ngā taha e rua.
y-x=-7
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
y+3x=1,y-x=-7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y+3x=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=-3x+1
Me tango 3x mai i ngā taha e rua o te whārite.
-3x+1-x=-7
Whakakapia te -3x+1 mō te y ki tērā atu whārite, y-x=-7.
-4x+1=-7
Tāpiri -3x ki te -x.
-4x=-8
Me tango 1 mai i ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te -4.
y=-3\times 2+1
Whakaurua te 2 mō x ki y=-3x+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-6+1
Whakareatia -3 ki te 2.
y=-5
Tāpiri 1 ki te -6.
y=-5,x=2
Kua oti te pūnaha te whakatau.
y+3x=1
Whakaarohia te whārite tuatahi. Me tāpiri te 3x ki ngā taha e rua.
y-x=-7
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
y+3x=1,y-x=-7
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&3\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\-7\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&3\\1&-1\end{matrix}\right))\left(\begin{matrix}1&3\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\-7\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&3\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\-7\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\1&-1\end{matrix}\right))\left(\begin{matrix}1\\-7\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-3}&-\frac{3}{-1-3}\\-\frac{1}{-1-3}&\frac{1}{-1-3}\end{matrix}\right)\left(\begin{matrix}1\\-7\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{3}{4}\\\frac{1}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}1\\-7\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}+\frac{3}{4}\left(-7\right)\\\frac{1}{4}-\frac{1}{4}\left(-7\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-5\\2\end{matrix}\right)
Mahia ngā tātaitanga.
y=-5,x=2
Tangohia ngā huānga poukapa y me x.
y+3x=1
Whakaarohia te whārite tuatahi. Me tāpiri te 3x ki ngā taha e rua.
y-x=-7
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
y+3x=1,y-x=-7
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
y-y+3x+x=1+7
Me tango y-x=-7 mai i y+3x=1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3x+x=1+7
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
4x=1+7
Tāpiri 3x ki te x.
4x=8
Tāpiri 1 ki te 7.
x=2
Whakawehea ngā taha e rua ki te 4.
y-2=-7
Whakaurua te 2 mō x ki y-x=-7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-5
Me tāpiri 2 ki ngā taha e rua o te whārite.
y=-5,x=2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}