Tīpoka ki ngā ihirangi matua
Whakaoti mō x_1, x_2, x_3
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x_{1}=-2x_{2}+x_{3}-3x_{4}
Me whakaoti te x_{1}+2x_{2}-x_{3}+3x_{4}=0 mō x_{1}.
2\left(-2x_{2}+x_{3}-3x_{4}\right)+3x_{2}-x_{3}+2x_{4}=0 -2x_{2}+x_{3}-3x_{4}+3x_{3}+3x_{4}=0
Whakakapia te -2x_{2}+x_{3}-3x_{4} mō te x_{1} i te whārite tuarua me te tuatoru.
x_{2}=x_{3}-4x_{4} x_{3}=\frac{1}{2}x_{2}
Me whakaoti ēnei whārite mō x_{2} me x_{3} takitahi.
x_{3}=\frac{1}{2}\left(x_{3}-4x_{4}\right)
Whakakapia te x_{3}-4x_{4} mō te x_{2} i te whārite x_{3}=\frac{1}{2}x_{2}.
x_{3}=-4x_{4}
Me whakaoti te x_{3}=\frac{1}{2}\left(x_{3}-4x_{4}\right) mō x_{3}.
x_{2}=-4x_{4}-4x_{4}
Whakakapia te -4x_{4} mō te x_{3} i te whārite x_{2}=x_{3}-4x_{4}.
x_{2}=-8x_{4}
Tātaitia te x_{2} i te x_{2}=-4x_{4}-4x_{4}.
x_{1}=-2\left(-8\right)x_{4}-4x_{4}-3x_{4}
Whakakapia te -8x_{4} mō te x_{2} me te -4x_{4} mō x_{3} i te whārite x_{1}=-2x_{2}+x_{3}-3x_{4}.
x_{1}=9x_{4}
Tātaitia te x_{1} i te x_{1}=-2\left(-8\right)x_{4}-4x_{4}-3x_{4}.
x_{1}=9x_{4} x_{2}=-8x_{4} x_{3}=-4x_{4}
Kua oti te pūnaha te whakatau.