Whakaoti mō x_1, x_2, x_3
x_{1}=9x_{4}
x_{2}=-8x_{4}
x_{3}=-4x_{4}
Tohaina
Kua tāruatia ki te papatopenga
x_{1}=-2x_{2}+x_{3}-3x_{4}
Me whakaoti te x_{1}+2x_{2}-x_{3}+3x_{4}=0 mō x_{1}.
2\left(-2x_{2}+x_{3}-3x_{4}\right)+3x_{2}-x_{3}+2x_{4}=0 -2x_{2}+x_{3}-3x_{4}+3x_{3}+3x_{4}=0
Whakakapia te -2x_{2}+x_{3}-3x_{4} mō te x_{1} i te whārite tuarua me te tuatoru.
x_{2}=x_{3}-4x_{4} x_{3}=\frac{1}{2}x_{2}
Me whakaoti ēnei whārite mō x_{2} me x_{3} takitahi.
x_{3}=\frac{1}{2}\left(x_{3}-4x_{4}\right)
Whakakapia te x_{3}-4x_{4} mō te x_{2} i te whārite x_{3}=\frac{1}{2}x_{2}.
x_{3}=-4x_{4}
Me whakaoti te x_{3}=\frac{1}{2}\left(x_{3}-4x_{4}\right) mō x_{3}.
x_{2}=-4x_{4}-4x_{4}
Whakakapia te -4x_{4} mō te x_{3} i te whārite x_{2}=x_{3}-4x_{4}.
x_{2}=-8x_{4}
Tātaitia te x_{2} i te x_{2}=-4x_{4}-4x_{4}.
x_{1}=-2\left(-8\right)x_{4}-4x_{4}-3x_{4}
Whakakapia te -8x_{4} mō te x_{2} me te -4x_{4} mō x_{3} i te whārite x_{1}=-2x_{2}+x_{3}-3x_{4}.
x_{1}=9x_{4}
Tātaitia te x_{1} i te x_{1}=-2\left(-8\right)x_{4}-4x_{4}-3x_{4}.
x_{1}=9x_{4} x_{2}=-8x_{4} x_{3}=-4x_{4}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}