Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-y=64,12x+26y=19
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-y=64
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=y+64
Me tāpiri y ki ngā taha e rua o te whārite.
12\left(y+64\right)+26y=19
Whakakapia te y+64 mō te x ki tērā atu whārite, 12x+26y=19.
12y+768+26y=19
Whakareatia 12 ki te y+64.
38y+768=19
Tāpiri 12y ki te 26y.
38y=-749
Me tango 768 mai i ngā taha e rua o te whārite.
y=-\frac{749}{38}
Whakawehea ngā taha e rua ki te 38.
x=-\frac{749}{38}+64
Whakaurua te -\frac{749}{38} mō y ki x=y+64. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{1683}{38}
Tāpiri 64 ki te -\frac{749}{38}.
x=\frac{1683}{38},y=-\frac{749}{38}
Kua oti te pūnaha te whakatau.
x-y=64,12x+26y=19
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-1\\12&26\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}64\\19\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-1\\12&26\end{matrix}\right))\left(\begin{matrix}1&-1\\12&26\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\12&26\end{matrix}\right))\left(\begin{matrix}64\\19\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-1\\12&26\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\12&26\end{matrix}\right))\left(\begin{matrix}64\\19\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\12&26\end{matrix}\right))\left(\begin{matrix}64\\19\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{26}{26-\left(-12\right)}&-\frac{-1}{26-\left(-12\right)}\\-\frac{12}{26-\left(-12\right)}&\frac{1}{26-\left(-12\right)}\end{matrix}\right)\left(\begin{matrix}64\\19\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{19}&\frac{1}{38}\\-\frac{6}{19}&\frac{1}{38}\end{matrix}\right)\left(\begin{matrix}64\\19\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{19}\times 64+\frac{1}{38}\times 19\\-\frac{6}{19}\times 64+\frac{1}{38}\times 19\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1683}{38}\\-\frac{749}{38}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{1683}{38},y=-\frac{749}{38}
Tangohia ngā huānga poukapa x me y.
x-y=64,12x+26y=19
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
12x+12\left(-1\right)y=12\times 64,12x+26y=19
Kia ōrite ai a x me 12x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 12 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
12x-12y=768,12x+26y=19
Whakarūnātia.
12x-12x-12y-26y=768-19
Me tango 12x+26y=19 mai i 12x-12y=768 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-12y-26y=768-19
Tāpiri 12x ki te -12x. Ka whakakore atu ngā kupu 12x me -12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-38y=768-19
Tāpiri -12y ki te -26y.
-38y=749
Tāpiri 768 ki te -19.
y=-\frac{749}{38}
Whakawehea ngā taha e rua ki te -38.
12x+26\left(-\frac{749}{38}\right)=19
Whakaurua te -\frac{749}{38} mō y ki 12x+26y=19. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
12x-\frac{9737}{19}=19
Whakareatia 26 ki te -\frac{749}{38}.
12x=\frac{10098}{19}
Me tāpiri \frac{9737}{19} ki ngā taha e rua o te whārite.
x=\frac{1683}{38}
Whakawehea ngā taha e rua ki te 12.
x=\frac{1683}{38},y=-\frac{749}{38}
Kua oti te pūnaha te whakatau.