Whakaoti mō x, y
x=-4
y=-8
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-y=4,6x+7y=-80
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-y=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=y+4
Me tāpiri y ki ngā taha e rua o te whārite.
6\left(y+4\right)+7y=-80
Whakakapia te y+4 mō te x ki tērā atu whārite, 6x+7y=-80.
6y+24+7y=-80
Whakareatia 6 ki te y+4.
13y+24=-80
Tāpiri 6y ki te 7y.
13y=-104
Me tango 24 mai i ngā taha e rua o te whārite.
y=-8
Whakawehea ngā taha e rua ki te 13.
x=-8+4
Whakaurua te -8 mō y ki x=y+4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-4
Tāpiri 4 ki te -8.
x=-4,y=-8
Kua oti te pūnaha te whakatau.
x-y=4,6x+7y=-80
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-1\\6&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-80\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-1\\6&7\end{matrix}\right))\left(\begin{matrix}1&-1\\6&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\6&7\end{matrix}\right))\left(\begin{matrix}4\\-80\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-1\\6&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\6&7\end{matrix}\right))\left(\begin{matrix}4\\-80\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\6&7\end{matrix}\right))\left(\begin{matrix}4\\-80\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{7-\left(-6\right)}&-\frac{-1}{7-\left(-6\right)}\\-\frac{6}{7-\left(-6\right)}&\frac{1}{7-\left(-6\right)}\end{matrix}\right)\left(\begin{matrix}4\\-80\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{13}&\frac{1}{13}\\-\frac{6}{13}&\frac{1}{13}\end{matrix}\right)\left(\begin{matrix}4\\-80\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{13}\times 4+\frac{1}{13}\left(-80\right)\\-\frac{6}{13}\times 4+\frac{1}{13}\left(-80\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\-8\end{matrix}\right)
Mahia ngā tātaitanga.
x=-4,y=-8
Tangohia ngā huānga poukapa x me y.
x-y=4,6x+7y=-80
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6x+6\left(-1\right)y=6\times 4,6x+7y=-80
Kia ōrite ai a x me 6x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
6x-6y=24,6x+7y=-80
Whakarūnātia.
6x-6x-6y-7y=24+80
Me tango 6x+7y=-80 mai i 6x-6y=24 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-6y-7y=24+80
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-13y=24+80
Tāpiri -6y ki te -7y.
-13y=104
Tāpiri 24 ki te 80.
y=-8
Whakawehea ngā taha e rua ki te -13.
6x+7\left(-8\right)=-80
Whakaurua te -8 mō y ki 6x+7y=-80. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
6x-56=-80
Whakareatia 7 ki te -8.
6x=-24
Me tāpiri 56 ki ngā taha e rua o te whārite.
x=-4
Whakawehea ngā taha e rua ki te 6.
x=-4,y=-8
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}