Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-3y=6,-8x-y=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-3y=6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=3y+6
Me tāpiri 3y ki ngā taha e rua o te whārite.
-8\left(3y+6\right)-y=6
Whakakapia te 6+3y mō te x ki tērā atu whārite, -8x-y=6.
-24y-48-y=6
Whakareatia -8 ki te 6+3y.
-25y-48=6
Tāpiri -24y ki te -y.
-25y=54
Me tāpiri 48 ki ngā taha e rua o te whārite.
y=-\frac{54}{25}
Whakawehea ngā taha e rua ki te -25.
x=3\left(-\frac{54}{25}\right)+6
Whakaurua te -\frac{54}{25} mō y ki x=3y+6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{162}{25}+6
Whakareatia 3 ki te -\frac{54}{25}.
x=-\frac{12}{25}
Tāpiri 6 ki te -\frac{162}{25}.
x=-\frac{12}{25},y=-\frac{54}{25}
Kua oti te pūnaha te whakatau.
x-3y=6,-8x-y=6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-3\\-8&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-3\\-8&-1\end{matrix}\right))\left(\begin{matrix}1&-3\\-8&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\-8&-1\end{matrix}\right))\left(\begin{matrix}6\\6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-3\\-8&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\-8&-1\end{matrix}\right))\left(\begin{matrix}6\\6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\-8&-1\end{matrix}\right))\left(\begin{matrix}6\\6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-3\left(-8\right)\right)}&-\frac{-3}{-1-\left(-3\left(-8\right)\right)}\\-\frac{-8}{-1-\left(-3\left(-8\right)\right)}&\frac{1}{-1-\left(-3\left(-8\right)\right)}\end{matrix}\right)\left(\begin{matrix}6\\6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{25}&-\frac{3}{25}\\-\frac{8}{25}&-\frac{1}{25}\end{matrix}\right)\left(\begin{matrix}6\\6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{25}\times 6-\frac{3}{25}\times 6\\-\frac{8}{25}\times 6-\frac{1}{25}\times 6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{12}{25}\\-\frac{54}{25}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{12}{25},y=-\frac{54}{25}
Tangohia ngā huānga poukapa x me y.
x-3y=6,-8x-y=6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-8x-8\left(-3\right)y=-8\times 6,-8x-y=6
Kia ōrite ai a x me -8x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -8 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-8x+24y=-48,-8x-y=6
Whakarūnātia.
-8x+8x+24y+y=-48-6
Me tango -8x-y=6 mai i -8x+24y=-48 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
24y+y=-48-6
Tāpiri -8x ki te 8x. Ka whakakore atu ngā kupu -8x me 8x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
25y=-48-6
Tāpiri 24y ki te y.
25y=-54
Tāpiri -48 ki te -6.
y=-\frac{54}{25}
Whakawehea ngā taha e rua ki te 25.
-8x-\left(-\frac{54}{25}\right)=6
Whakaurua te -\frac{54}{25} mō y ki -8x-y=6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-8x=\frac{96}{25}
Me tango \frac{54}{25} mai i ngā taha e rua o te whārite.
x=-\frac{12}{25}
Whakawehea ngā taha e rua ki te -8.
x=-\frac{12}{25},y=-\frac{54}{25}
Kua oti te pūnaha te whakatau.