Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+y=4,y^{2}+x^{2}=8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=4
Whakaotia te x+y=4 mō x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+4
Me tango y mai i ngā taha e rua o te whārite.
y^{2}+\left(-y+4\right)^{2}=8
Whakakapia te -y+4 mō te x ki tērā atu whārite, y^{2}+x^{2}=8.
y^{2}+y^{2}-8y+16=8
Pūrua -y+4.
2y^{2}-8y+16=8
Tāpiri y^{2} ki te y^{2}.
2y^{2}-8y+8=0
Me tango 8 mai i ngā taha e rua o te whārite.
y=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\times 8}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1+1\left(-1\right)^{2} mō a, 1\times 4\left(-1\right)\times 2 mō b, me 8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-8\right)±\sqrt{64-4\times 2\times 8}}{2\times 2}
Pūrua 1\times 4\left(-1\right)\times 2.
y=\frac{-\left(-8\right)±\sqrt{64-8\times 8}}{2\times 2}
Whakareatia -4 ki te 1+1\left(-1\right)^{2}.
y=\frac{-\left(-8\right)±\sqrt{64-64}}{2\times 2}
Whakareatia -8 ki te 8.
y=\frac{-\left(-8\right)±\sqrt{0}}{2\times 2}
Tāpiri 64 ki te -64.
y=-\frac{-8}{2\times 2}
Tuhia te pūtakerua o te 0.
y=\frac{8}{2\times 2}
Ko te tauaro o 1\times 4\left(-1\right)\times 2 ko 8.
y=\frac{8}{4}
Whakareatia 2 ki te 1+1\left(-1\right)^{2}.
y=2
Whakawehe 8 ki te 4.
x=-2+4
E rua ngā otinga mō y: 2 me 2. Me whakakapi 2 mō y ki te whārite x=-y+4 hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=2
Tāpiri -2 ki te 4.
x=2,y=2\text{ or }x=2,y=2
Kua oti te pūnaha te whakatau.