Whakaoti mō x, y
x=4
y=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-y=6
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
4y+2x=0
Whakaarohia te whārite tuarua. Me tāpiri te 2x ki ngā taha e rua.
x-y=6,2x+4y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-y=6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=y+6
Me tāpiri y ki ngā taha e rua o te whārite.
2\left(y+6\right)+4y=0
Whakakapia te y+6 mō te x ki tērā atu whārite, 2x+4y=0.
2y+12+4y=0
Whakareatia 2 ki te y+6.
6y+12=0
Tāpiri 2y ki te 4y.
6y=-12
Me tango 12 mai i ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua ki te 6.
x=-2+6
Whakaurua te -2 mō y ki x=y+6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=4
Tāpiri 6 ki te -2.
x=4,y=-2
Kua oti te pūnaha te whakatau.
x-y=6
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
4y+2x=0
Whakaarohia te whārite tuarua. Me tāpiri te 2x ki ngā taha e rua.
x-y=6,2x+4y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-1\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-1\\2&4\end{matrix}\right))\left(\begin{matrix}1&-1\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&4\end{matrix}\right))\left(\begin{matrix}6\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-1\\2&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&4\end{matrix}\right))\left(\begin{matrix}6\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&4\end{matrix}\right))\left(\begin{matrix}6\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-\left(-2\right)}&-\frac{-1}{4-\left(-2\right)}\\-\frac{2}{4-\left(-2\right)}&\frac{1}{4-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}6\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{1}{6}\\-\frac{1}{3}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}6\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 6\\-\frac{1}{3}\times 6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=4,y=-2
Tangohia ngā huānga poukapa x me y.
x-y=6
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
4y+2x=0
Whakaarohia te whārite tuarua. Me tāpiri te 2x ki ngā taha e rua.
x-y=6,2x+4y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x+2\left(-1\right)y=2\times 6,2x+4y=0
Kia ōrite ai a x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
2x-2y=12,2x+4y=0
Whakarūnātia.
2x-2x-2y-4y=12
Me tango 2x+4y=0 mai i 2x-2y=12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-2y-4y=12
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-6y=12
Tāpiri -2y ki te -4y.
y=-2
Whakawehea ngā taha e rua ki te -6.
2x+4\left(-2\right)=0
Whakaurua te -2 mō y ki 2x+4y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x-8=0
Whakareatia 4 ki te -2.
2x=8
Me tāpiri 8 ki ngā taha e rua o te whārite.
x=4
Whakawehea ngā taha e rua ki te 2.
x=4,y=-2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}