Whakaoti mō x, y
x=53
y=17
Graph
Tohaina
Kua tāruatia ki te papatopenga
x-3y=2
Whakaarohia te whārite tuatahi. Tangohia te 3y mai i ngā taha e rua.
x-5=4y-20
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te y-5.
x-5-4y=-20
Tangohia te 4y mai i ngā taha e rua.
x-4y=-20+5
Me tāpiri te 5 ki ngā taha e rua.
x-4y=-15
Tāpirihia te -20 ki te 5, ka -15.
x-3y=2,x-4y=-15
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-3y=2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=3y+2
Me tāpiri 3y ki ngā taha e rua o te whārite.
3y+2-4y=-15
Whakakapia te 3y+2 mō te x ki tērā atu whārite, x-4y=-15.
-y+2=-15
Tāpiri 3y ki te -4y.
-y=-17
Me tango 2 mai i ngā taha e rua o te whārite.
y=17
Whakawehea ngā taha e rua ki te -1.
x=3\times 17+2
Whakaurua te 17 mō y ki x=3y+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=51+2
Whakareatia 3 ki te 17.
x=53
Tāpiri 2 ki te 51.
x=53,y=17
Kua oti te pūnaha te whakatau.
x-3y=2
Whakaarohia te whārite tuatahi. Tangohia te 3y mai i ngā taha e rua.
x-5=4y-20
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te y-5.
x-5-4y=-20
Tangohia te 4y mai i ngā taha e rua.
x-4y=-20+5
Me tāpiri te 5 ki ngā taha e rua.
x-4y=-15
Tāpirihia te -20 ki te 5, ka -15.
x-3y=2,x-4y=-15
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-3\\1&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-15\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-3\\1&-4\end{matrix}\right))\left(\begin{matrix}1&-3\\1&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&-4\end{matrix}\right))\left(\begin{matrix}2\\-15\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-3\\1&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&-4\end{matrix}\right))\left(\begin{matrix}2\\-15\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&-4\end{matrix}\right))\left(\begin{matrix}2\\-15\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{-4-\left(-3\right)}&-\frac{-3}{-4-\left(-3\right)}\\-\frac{1}{-4-\left(-3\right)}&\frac{1}{-4-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}2\\-15\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4&-3\\1&-1\end{matrix}\right)\left(\begin{matrix}2\\-15\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\times 2-3\left(-15\right)\\2-\left(-15\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}53\\17\end{matrix}\right)
Mahia ngā tātaitanga.
x=53,y=17
Tangohia ngā huānga poukapa x me y.
x-3y=2
Whakaarohia te whārite tuatahi. Tangohia te 3y mai i ngā taha e rua.
x-5=4y-20
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te y-5.
x-5-4y=-20
Tangohia te 4y mai i ngā taha e rua.
x-4y=-20+5
Me tāpiri te 5 ki ngā taha e rua.
x-4y=-15
Tāpirihia te -20 ki te 5, ka -15.
x-3y=2,x-4y=-15
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-x-3y+4y=2+15
Me tango x-4y=-15 mai i x-3y=2 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3y+4y=2+15
Tāpiri x ki te -x. Ka whakakore atu ngā kupu x me -x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
y=2+15
Tāpiri -3y ki te 4y.
y=17
Tāpiri 2 ki te 15.
x-4\times 17=-15
Whakaurua te 17 mō y ki x-4y=-15. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-68=-15
Whakareatia -4 ki te 17.
x=53
Me tāpiri 68 ki ngā taha e rua o te whārite.
x=53,y=17
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}