Whakaoti mō x, y, z
x = \frac{21}{2} = 10\frac{1}{2} = 10.5
y=-\frac{1}{2}=-0.5
z=15
Tohaina
Kua tāruatia ki te papatopenga
x=-y+z-5
Me whakaoti te x+y-z=1-6 mō x.
3\left(-y+z-5\right)+y-2z=3-2 -y+z-5-y-z=-1-3
Whakakapia te -y+z-5 mō te x i te whārite tuarua me te tuatoru.
z=16+2y y=-\frac{1}{2}
Me whakaoti ēnei whārite mō z me y takitahi.
z=16+2\left(-\frac{1}{2}\right)
Whakakapia te -\frac{1}{2} mō te y i te whārite z=16+2y.
z=15
Tātaitia te z i te z=16+2\left(-\frac{1}{2}\right).
x=-\left(-\frac{1}{2}\right)+15-5
Whakakapia te 15 mō te z me te -\frac{1}{2} mō y i te whārite x=-y+z-5.
x=\frac{21}{2}
Tātaitia te x i te x=-\left(-\frac{1}{2}\right)+15-5.
x=\frac{21}{2} y=-\frac{1}{2} z=15
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}