Whakaoti mō x, y
x=6
y=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+y=9,4x+5y=39
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=9
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+9
Me tango y mai i ngā taha e rua o te whārite.
4\left(-y+9\right)+5y=39
Whakakapia te -y+9 mō te x ki tērā atu whārite, 4x+5y=39.
-4y+36+5y=39
Whakareatia 4 ki te -y+9.
y+36=39
Tāpiri -4y ki te 5y.
y=3
Me tango 36 mai i ngā taha e rua o te whārite.
x=-3+9
Whakaurua te 3 mō y ki x=-y+9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=6
Tāpiri 9 ki te -3.
x=6,y=3
Kua oti te pūnaha te whakatau.
x+y=9,4x+5y=39
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\39\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\4&5\end{matrix}\right))\left(\begin{matrix}1&1\\4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&5\end{matrix}\right))\left(\begin{matrix}9\\39\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\4&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&5\end{matrix}\right))\left(\begin{matrix}9\\39\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&5\end{matrix}\right))\left(\begin{matrix}9\\39\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5-4}&-\frac{1}{5-4}\\-\frac{4}{5-4}&\frac{1}{5-4}\end{matrix}\right)\left(\begin{matrix}9\\39\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5&-1\\-4&1\end{matrix}\right)\left(\begin{matrix}9\\39\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\times 9-39\\-4\times 9+39\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=6,y=3
Tangohia ngā huānga poukapa x me y.
x+y=9,4x+5y=39
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4x+4y=4\times 9,4x+5y=39
Kia ōrite ai a x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
4x+4y=36,4x+5y=39
Whakarūnātia.
4x-4x+4y-5y=36-39
Me tango 4x+5y=39 mai i 4x+4y=36 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4y-5y=36-39
Tāpiri 4x ki te -4x. Ka whakakore atu ngā kupu 4x me -4x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-y=36-39
Tāpiri 4y ki te -5y.
-y=-3
Tāpiri 36 ki te -39.
y=3
Whakawehea ngā taha e rua ki te -1.
4x+5\times 3=39
Whakaurua te 3 mō y ki 4x+5y=39. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x+15=39
Whakareatia 5 ki te 3.
4x=24
Me tango 15 mai i ngā taha e rua o te whārite.
x=6
Whakawehea ngā taha e rua ki te 4.
x=6,y=3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}