Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+y-23y=0
Whakaarohia te whārite tuarua. Tangohia te 23y mai i ngā taha e rua.
2x-22y=0
Pahekotia te y me -23y, ka -22y.
x+y=89,2x-22y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=89
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+89
Me tango y mai i ngā taha e rua o te whārite.
2\left(-y+89\right)-22y=0
Whakakapia te -y+89 mō te x ki tērā atu whārite, 2x-22y=0.
-2y+178-22y=0
Whakareatia 2 ki te -y+89.
-24y+178=0
Tāpiri -2y ki te -22y.
-24y=-178
Me tango 178 mai i ngā taha e rua o te whārite.
y=\frac{89}{12}
Whakawehea ngā taha e rua ki te -24.
x=-\frac{89}{12}+89
Whakaurua te \frac{89}{12} mō y ki x=-y+89. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{979}{12}
Tāpiri 89 ki te -\frac{89}{12}.
x=\frac{979}{12},y=\frac{89}{12}
Kua oti te pūnaha te whakatau.
2x+y-23y=0
Whakaarohia te whārite tuarua. Tangohia te 23y mai i ngā taha e rua.
2x-22y=0
Pahekotia te y me -23y, ka -22y.
x+y=89,2x-22y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\2&-22\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}89\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\2&-22\end{matrix}\right))\left(\begin{matrix}1&1\\2&-22\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-22\end{matrix}\right))\left(\begin{matrix}89\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\2&-22\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-22\end{matrix}\right))\left(\begin{matrix}89\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&-22\end{matrix}\right))\left(\begin{matrix}89\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{22}{-22-2}&-\frac{1}{-22-2}\\-\frac{2}{-22-2}&\frac{1}{-22-2}\end{matrix}\right)\left(\begin{matrix}89\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{12}&\frac{1}{24}\\\frac{1}{12}&-\frac{1}{24}\end{matrix}\right)\left(\begin{matrix}89\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{12}\times 89\\\frac{1}{12}\times 89\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{979}{12}\\\frac{89}{12}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{979}{12},y=\frac{89}{12}
Tangohia ngā huānga poukapa x me y.
2x+y-23y=0
Whakaarohia te whārite tuarua. Tangohia te 23y mai i ngā taha e rua.
2x-22y=0
Pahekotia te y me -23y, ka -22y.
x+y=89,2x-22y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x+2y=2\times 89,2x-22y=0
Kia ōrite ai a x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
2x+2y=178,2x-22y=0
Whakarūnātia.
2x-2x+2y+22y=178
Me tango 2x-22y=0 mai i 2x+2y=178 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2y+22y=178
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
24y=178
Tāpiri 2y ki te 22y.
y=\frac{89}{12}
Whakawehea ngā taha e rua ki te 24.
2x-22\times \frac{89}{12}=0
Whakaurua te \frac{89}{12} mō y ki 2x-22y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x-\frac{979}{6}=0
Whakareatia -22 ki te \frac{89}{12}.
2x=\frac{979}{6}
Me tāpiri \frac{979}{6} ki ngā taha e rua o te whārite.
x=\frac{979}{12}
Whakawehea ngā taha e rua ki te 2.
x=\frac{979}{12},y=\frac{89}{12}
Kua oti te pūnaha te whakatau.