Whakaoti mō x, y
x = \frac{235}{2} = 117\frac{1}{2} = 117.5
y = -\frac{107}{2} = -53\frac{1}{2} = -53.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+y=64,12x+26y=19
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=64
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+64
Me tango y mai i ngā taha e rua o te whārite.
12\left(-y+64\right)+26y=19
Whakakapia te -y+64 mō te x ki tērā atu whārite, 12x+26y=19.
-12y+768+26y=19
Whakareatia 12 ki te -y+64.
14y+768=19
Tāpiri -12y ki te 26y.
14y=-749
Me tango 768 mai i ngā taha e rua o te whārite.
y=-\frac{107}{2}
Whakawehea ngā taha e rua ki te 14.
x=-\left(-\frac{107}{2}\right)+64
Whakaurua te -\frac{107}{2} mō y ki x=-y+64. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{107}{2}+64
Whakareatia -1 ki te -\frac{107}{2}.
x=\frac{235}{2}
Tāpiri 64 ki te \frac{107}{2}.
x=\frac{235}{2},y=-\frac{107}{2}
Kua oti te pūnaha te whakatau.
x+y=64,12x+26y=19
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\12&26\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}64\\19\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\12&26\end{matrix}\right))\left(\begin{matrix}1&1\\12&26\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\12&26\end{matrix}\right))\left(\begin{matrix}64\\19\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\12&26\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\12&26\end{matrix}\right))\left(\begin{matrix}64\\19\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\12&26\end{matrix}\right))\left(\begin{matrix}64\\19\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{26}{26-12}&-\frac{1}{26-12}\\-\frac{12}{26-12}&\frac{1}{26-12}\end{matrix}\right)\left(\begin{matrix}64\\19\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{7}&-\frac{1}{14}\\-\frac{6}{7}&\frac{1}{14}\end{matrix}\right)\left(\begin{matrix}64\\19\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{7}\times 64-\frac{1}{14}\times 19\\-\frac{6}{7}\times 64+\frac{1}{14}\times 19\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{235}{2}\\-\frac{107}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{235}{2},y=-\frac{107}{2}
Tangohia ngā huānga poukapa x me y.
x+y=64,12x+26y=19
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
12x+12y=12\times 64,12x+26y=19
Kia ōrite ai a x me 12x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 12 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
12x+12y=768,12x+26y=19
Whakarūnātia.
12x-12x+12y-26y=768-19
Me tango 12x+26y=19 mai i 12x+12y=768 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
12y-26y=768-19
Tāpiri 12x ki te -12x. Ka whakakore atu ngā kupu 12x me -12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-14y=768-19
Tāpiri 12y ki te -26y.
-14y=749
Tāpiri 768 ki te -19.
y=-\frac{107}{2}
Whakawehea ngā taha e rua ki te -14.
12x+26\left(-\frac{107}{2}\right)=19
Whakaurua te -\frac{107}{2} mō y ki 12x+26y=19. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
12x-1391=19
Whakareatia 26 ki te -\frac{107}{2}.
12x=1410
Me tāpiri 1391 ki ngā taha e rua o te whārite.
x=\frac{235}{2}
Whakawehea ngā taha e rua ki te 12.
x=\frac{235}{2},y=-\frac{107}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}