Whakaoti mō x, y
x=400
y=100
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+y=500,50x+80y=28000
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=500
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+500
Me tango y mai i ngā taha e rua o te whārite.
50\left(-y+500\right)+80y=28000
Whakakapia te -y+500 mō te x ki tērā atu whārite, 50x+80y=28000.
-50y+25000+80y=28000
Whakareatia 50 ki te -y+500.
30y+25000=28000
Tāpiri -50y ki te 80y.
30y=3000
Me tango 25000 mai i ngā taha e rua o te whārite.
y=100
Whakawehea ngā taha e rua ki te 30.
x=-100+500
Whakaurua te 100 mō y ki x=-y+500. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=400
Tāpiri 500 ki te -100.
x=400,y=100
Kua oti te pūnaha te whakatau.
x+y=500,50x+80y=28000
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\50&80\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}500\\28000\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\50&80\end{matrix}\right))\left(\begin{matrix}1&1\\50&80\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\50&80\end{matrix}\right))\left(\begin{matrix}500\\28000\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\50&80\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\50&80\end{matrix}\right))\left(\begin{matrix}500\\28000\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\50&80\end{matrix}\right))\left(\begin{matrix}500\\28000\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{80}{80-50}&-\frac{1}{80-50}\\-\frac{50}{80-50}&\frac{1}{80-50}\end{matrix}\right)\left(\begin{matrix}500\\28000\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{3}&-\frac{1}{30}\\-\frac{5}{3}&\frac{1}{30}\end{matrix}\right)\left(\begin{matrix}500\\28000\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{3}\times 500-\frac{1}{30}\times 28000\\-\frac{5}{3}\times 500+\frac{1}{30}\times 28000\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}400\\100\end{matrix}\right)
Mahia ngā tātaitanga.
x=400,y=100
Tangohia ngā huānga poukapa x me y.
x+y=500,50x+80y=28000
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
50x+50y=50\times 500,50x+80y=28000
Kia ōrite ai a x me 50x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 50 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
50x+50y=25000,50x+80y=28000
Whakarūnātia.
50x-50x+50y-80y=25000-28000
Me tango 50x+80y=28000 mai i 50x+50y=25000 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
50y-80y=25000-28000
Tāpiri 50x ki te -50x. Ka whakakore atu ngā kupu 50x me -50x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-30y=25000-28000
Tāpiri 50y ki te -80y.
-30y=-3000
Tāpiri 25000 ki te -28000.
y=100
Whakawehea ngā taha e rua ki te -30.
50x+80\times 100=28000
Whakaurua te 100 mō y ki 50x+80y=28000. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
50x+8000=28000
Whakareatia 80 ki te 100.
50x=20000
Me tango 8000 mai i ngā taha e rua o te whārite.
x=400
Whakawehea ngā taha e rua ki te 50.
x=400,y=100
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}