Whakaoti mō x, y
x=15
y=35
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+y=50,300x+200y=11500
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=50
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+50
Me tango y mai i ngā taha e rua o te whārite.
300\left(-y+50\right)+200y=11500
Whakakapia te -y+50 mō te x ki tērā atu whārite, 300x+200y=11500.
-300y+15000+200y=11500
Whakareatia 300 ki te -y+50.
-100y+15000=11500
Tāpiri -300y ki te 200y.
-100y=-3500
Me tango 15000 mai i ngā taha e rua o te whārite.
y=35
Whakawehea ngā taha e rua ki te -100.
x=-35+50
Whakaurua te 35 mō y ki x=-y+50. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=15
Tāpiri 50 ki te -35.
x=15,y=35
Kua oti te pūnaha te whakatau.
x+y=50,300x+200y=11500
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\300&200\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\11500\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\300&200\end{matrix}\right))\left(\begin{matrix}1&1\\300&200\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\300&200\end{matrix}\right))\left(\begin{matrix}50\\11500\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\300&200\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\300&200\end{matrix}\right))\left(\begin{matrix}50\\11500\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\300&200\end{matrix}\right))\left(\begin{matrix}50\\11500\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{200}{200-300}&-\frac{1}{200-300}\\-\frac{300}{200-300}&\frac{1}{200-300}\end{matrix}\right)\left(\begin{matrix}50\\11500\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2&\frac{1}{100}\\3&-\frac{1}{100}\end{matrix}\right)\left(\begin{matrix}50\\11500\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\times 50+\frac{1}{100}\times 11500\\3\times 50-\frac{1}{100}\times 11500\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\35\end{matrix}\right)
Mahia ngā tātaitanga.
x=15,y=35
Tangohia ngā huānga poukapa x me y.
x+y=50,300x+200y=11500
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
300x+300y=300\times 50,300x+200y=11500
Kia ōrite ai a x me 300x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 300 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
300x+300y=15000,300x+200y=11500
Whakarūnātia.
300x-300x+300y-200y=15000-11500
Me tango 300x+200y=11500 mai i 300x+300y=15000 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
300y-200y=15000-11500
Tāpiri 300x ki te -300x. Ka whakakore atu ngā kupu 300x me -300x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
100y=15000-11500
Tāpiri 300y ki te -200y.
100y=3500
Tāpiri 15000 ki te -11500.
y=35
Whakawehea ngā taha e rua ki te 100.
300x+200\times 35=11500
Whakaurua te 35 mō y ki 300x+200y=11500. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
300x+7000=11500
Whakareatia 200 ki te 35.
300x=4500
Me tango 7000 mai i ngā taha e rua o te whārite.
x=15
Whakawehea ngā taha e rua ki te 300.
x=15,y=35
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}