Whakaoti mō x, y
x=3.4
y=2.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+y=5.9,2x+4y=16.8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=5.9
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+5.9
Me tango y mai i ngā taha e rua o te whārite.
2\left(-y+5.9\right)+4y=16.8
Whakakapia te -y+5.9 mō te x ki tērā atu whārite, 2x+4y=16.8.
-2y+11.8+4y=16.8
Whakareatia 2 ki te -y+5.9.
2y+11.8=16.8
Tāpiri -2y ki te 4y.
2y=5
Me tango 11.8 mai i ngā taha e rua o te whārite.
y=\frac{5}{2}
Whakawehea ngā taha e rua ki te 2.
x=-\frac{5}{2}+5.9
Whakaurua te \frac{5}{2} mō y ki x=-y+5.9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{17}{5}
Tāpiri 5.9 ki te -\frac{5}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{17}{5},y=\frac{5}{2}
Kua oti te pūnaha te whakatau.
x+y=5.9,2x+4y=16.8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5.9\\16.8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\2&4\end{matrix}\right))\left(\begin{matrix}1&1\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&4\end{matrix}\right))\left(\begin{matrix}5.9\\16.8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\2&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&4\end{matrix}\right))\left(\begin{matrix}5.9\\16.8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&4\end{matrix}\right))\left(\begin{matrix}5.9\\16.8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-2}&-\frac{1}{4-2}\\-\frac{2}{4-2}&\frac{1}{4-2}\end{matrix}\right)\left(\begin{matrix}5.9\\16.8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-\frac{1}{2}\\-1&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}5.9\\16.8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\times 5.9-\frac{1}{2}\times 16.8\\-5.9+\frac{1}{2}\times 16.8\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{17}{5}\\\frac{5}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{17}{5},y=\frac{5}{2}
Tangohia ngā huānga poukapa x me y.
x+y=5.9,2x+4y=16.8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x+2y=2\times 5.9,2x+4y=16.8
Kia ōrite ai a x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
2x+2y=11.8,2x+4y=16.8
Whakarūnātia.
2x-2x+2y-4y=\frac{59-84}{5}
Me tango 2x+4y=16.8 mai i 2x+2y=11.8 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2y-4y=\frac{59-84}{5}
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-2y=\frac{59-84}{5}
Tāpiri 2y ki te -4y.
-2y=-5
Tāpiri 11.8 ki te -16.8 mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=\frac{5}{2}
Whakawehea ngā taha e rua ki te -2.
2x+4\times \frac{5}{2}=16.8
Whakaurua te \frac{5}{2} mō y ki 2x+4y=16.8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x+10=16.8
Whakareatia 4 ki te \frac{5}{2}.
2x=6.8
Me tango 10 mai i ngā taha e rua o te whārite.
x=3.4
Whakawehea ngā taha e rua ki te 2.
x=3.4,y=\frac{5}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}