Whakaoti mō x, y
x=11.5
y=9.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+y=21,0.25x+0.05y=3.35
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=21
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+21
Me tango y mai i ngā taha e rua o te whārite.
0.25\left(-y+21\right)+0.05y=3.35
Whakakapia te -y+21 mō te x ki tērā atu whārite, 0.25x+0.05y=3.35.
-0.25y+5.25+0.05y=3.35
Whakareatia 0.25 ki te -y+21.
-0.2y+5.25=3.35
Tāpiri -\frac{y}{4} ki te \frac{y}{20}.
-0.2y=-1.9
Me tango 5.25 mai i ngā taha e rua o te whārite.
y=9.5
Me whakarea ngā taha e rua ki te -5.
x=-9.5+21
Whakaurua te 9.5 mō y ki x=-y+21. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=11.5
Tāpiri 21 ki te -9.5.
x=11.5,y=9.5
Kua oti te pūnaha te whakatau.
x+y=21,0.25x+0.05y=3.35
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\0.25&0.05\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}21\\3.35\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\0.25&0.05\end{matrix}\right))\left(\begin{matrix}1&1\\0.25&0.05\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.25&0.05\end{matrix}\right))\left(\begin{matrix}21\\3.35\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\0.25&0.05\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.25&0.05\end{matrix}\right))\left(\begin{matrix}21\\3.35\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.25&0.05\end{matrix}\right))\left(\begin{matrix}21\\3.35\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{0.05}{0.05-0.25}&-\frac{1}{0.05-0.25}\\-\frac{0.25}{0.05-0.25}&\frac{1}{0.05-0.25}\end{matrix}\right)\left(\begin{matrix}21\\3.35\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-0.25&5\\1.25&-5\end{matrix}\right)\left(\begin{matrix}21\\3.35\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-0.25\times 21+5\times 3.35\\1.25\times 21-5\times 3.35\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11.5\\9.5\end{matrix}\right)
Mahia ngā tātaitanga.
x=11.5,y=9.5
Tangohia ngā huānga poukapa x me y.
x+y=21,0.25x+0.05y=3.35
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
0.25x+0.25y=0.25\times 21,0.25x+0.05y=3.35
Kia ōrite ai a x me \frac{x}{4}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 0.25 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
0.25x+0.25y=5.25,0.25x+0.05y=3.35
Whakarūnātia.
0.25x-0.25x+0.25y-0.05y=5.25-3.35
Me tango 0.25x+0.05y=3.35 mai i 0.25x+0.25y=5.25 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
0.25y-0.05y=5.25-3.35
Tāpiri \frac{x}{4} ki te -\frac{x}{4}. Ka whakakore atu ngā kupu \frac{x}{4} me -\frac{x}{4}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
0.2y=5.25-3.35
Tāpiri \frac{y}{4} ki te -\frac{y}{20}.
0.2y=1.9
Tāpiri 5.25 ki te -3.35 mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=9.5
Me whakarea ngā taha e rua ki te 5.
0.25x+0.05\times 9.5=3.35
Whakaurua te 9.5 mō y ki 0.25x+0.05y=3.35. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
0.25x+0.475=3.35
Whakareatia 0.05 ki te 9.5 mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
0.25x=2.875
Me tango 0.475 mai i ngā taha e rua o te whārite.
x=11.5
Me whakarea ngā taha e rua ki te 4.
x=11.5,y=9.5
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}