Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y-22-\left(x-11\right)=36
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 2.
y-22-x+11=36
Hei kimi i te tauaro o x-11, kimihia te tauaro o ia taurangi.
y-11-x=36
Tāpirihia te -22 ki te 11, ka -11.
y-x=36+11
Me tāpiri te 11 ki ngā taha e rua.
y-x=47
Tāpirihia te 36 ki te 11, ka 47.
x+y=122,-x+y=47
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=122
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+122
Me tango y mai i ngā taha e rua o te whārite.
-\left(-y+122\right)+y=47
Whakakapia te -y+122 mō te x ki tērā atu whārite, -x+y=47.
y-122+y=47
Whakareatia -1 ki te -y+122.
2y-122=47
Tāpiri y ki te y.
2y=169
Me tāpiri 122 ki ngā taha e rua o te whārite.
y=\frac{169}{2}
Whakawehea ngā taha e rua ki te 2.
x=-\frac{169}{2}+122
Whakaurua te \frac{169}{2} mō y ki x=-y+122. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{75}{2}
Tāpiri 122 ki te -\frac{169}{2}.
x=\frac{75}{2},y=\frac{169}{2}
Kua oti te pūnaha te whakatau.
y-22-\left(x-11\right)=36
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 2.
y-22-x+11=36
Hei kimi i te tauaro o x-11, kimihia te tauaro o ia taurangi.
y-11-x=36
Tāpirihia te -22 ki te 11, ka -11.
y-x=36+11
Me tāpiri te 11 ki ngā taha e rua.
y-x=47
Tāpirihia te 36 ki te 11, ka 47.
x+y=122,-x+y=47
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}122\\47\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}1&1\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}122\\47\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\-1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}122\\47\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&1\end{matrix}\right))\left(\begin{matrix}122\\47\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{1}{1-\left(-1\right)}\\-\frac{-1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}122\\47\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}122\\47\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 122-\frac{1}{2}\times 47\\\frac{1}{2}\times 122+\frac{1}{2}\times 47\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{75}{2}\\\frac{169}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{75}{2},y=\frac{169}{2}
Tangohia ngā huānga poukapa x me y.
y-22-\left(x-11\right)=36
Whakaarohia te whārite tuarua. Whakareatia ngā taha e rua o te whārite ki te 2.
y-22-x+11=36
Hei kimi i te tauaro o x-11, kimihia te tauaro o ia taurangi.
y-11-x=36
Tāpirihia te -22 ki te 11, ka -11.
y-x=36+11
Me tāpiri te 11 ki ngā taha e rua.
y-x=47
Tāpirihia te 36 ki te 11, ka 47.
x+y=122,-x+y=47
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x+x+y-y=122-47
Me tango -x+y=47 mai i x+y=122 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
x+x=122-47
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2x=122-47
Tāpiri x ki te x.
2x=75
Tāpiri 122 ki te -47.
x=\frac{75}{2}
Whakawehea ngā taha e rua ki te 2.
-\frac{75}{2}+y=47
Whakaurua te \frac{75}{2} mō x ki -x+y=47. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=\frac{169}{2}
Me tāpiri \frac{75}{2} ki ngā taha e rua o te whārite.
x=\frac{75}{2},y=\frac{169}{2}
Kua oti te pūnaha te whakatau.