Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+y=11,x+2y=17
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=11
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y+11
Me tango y mai i ngā taha e rua o te whārite.
-y+11+2y=17
Whakakapia te -y+11 mō te x ki tērā atu whārite, x+2y=17.
y+11=17
Tāpiri -y ki te 2y.
y=6
Me tango 11 mai i ngā taha e rua o te whārite.
x=-6+11
Whakaurua te 6 mō y ki x=-y+11. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=5
Tāpiri 11 ki te -6.
x=5,y=6
Kua oti te pūnaha te whakatau.
x+y=11,x+2y=17
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\17\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\1&2\end{matrix}\right))\left(\begin{matrix}1&1\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&2\end{matrix}\right))\left(\begin{matrix}11\\17\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&2\end{matrix}\right))\left(\begin{matrix}11\\17\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&2\end{matrix}\right))\left(\begin{matrix}11\\17\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-1}&-\frac{1}{2-1}\\-\frac{1}{2-1}&\frac{1}{2-1}\end{matrix}\right)\left(\begin{matrix}11\\17\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-1\\-1&1\end{matrix}\right)\left(\begin{matrix}11\\17\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\times 11-17\\-11+17\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\6\end{matrix}\right)
Mahia ngā tātaitanga.
x=5,y=6
Tangohia ngā huānga poukapa x me y.
x+y=11,x+2y=17
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
x-x+y-2y=11-17
Me tango x+2y=17 mai i x+y=11 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y-2y=11-17
Tāpiri x ki te -x. Ka whakakore atu ngā kupu x me -x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-y=11-17
Tāpiri y ki te -2y.
-y=-6
Tāpiri 11 ki te -17.
y=6
Whakawehea ngā taha e rua ki te -1.
x+2\times 6=17
Whakaurua te 6 mō y ki x+2y=17. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x+12=17
Whakareatia 2 ki te 6.
x=5
Me tango 12 mai i ngā taha e rua o te whārite.
x=5,y=6
Kua oti te pūnaha te whakatau.