Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+y=-0.5,-0.6x+0.7y=0.82
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=-0.5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y-0.5
Me tango y mai i ngā taha e rua o te whārite.
-0.6\left(-y-0.5\right)+0.7y=0.82
Whakakapia te -y-0.5 mō te x ki tērā atu whārite, -0.6x+0.7y=0.82.
0.6y+0.3+0.7y=0.82
Whakareatia -0.6 ki te -y-0.5.
1.3y+0.3=0.82
Tāpiri \frac{3y}{5} ki te \frac{7y}{10}.
1.3y=0.52
Me tango 0.3 mai i ngā taha e rua o te whārite.
y=0.4
Whakawehea ngā taha e rua o te whārite ki te 1.3, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-0.4-0.5
Whakaurua te 0.4 mō y ki x=-y-0.5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-0.9
Tāpiri -0.5 ki te -0.4 mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-0.9,y=0.4
Kua oti te pūnaha te whakatau.
x+y=-0.5,-0.6x+0.7y=0.82
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\-0.6&0.7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-0.5\\0.82\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\-0.6&0.7\end{matrix}\right))\left(\begin{matrix}1&1\\-0.6&0.7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-0.6&0.7\end{matrix}\right))\left(\begin{matrix}-0.5\\0.82\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\-0.6&0.7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-0.6&0.7\end{matrix}\right))\left(\begin{matrix}-0.5\\0.82\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-0.6&0.7\end{matrix}\right))\left(\begin{matrix}-0.5\\0.82\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{0.7}{0.7-\left(-0.6\right)}&-\frac{1}{0.7-\left(-0.6\right)}\\-\frac{-0.6}{0.7-\left(-0.6\right)}&\frac{1}{0.7-\left(-0.6\right)}\end{matrix}\right)\left(\begin{matrix}-0.5\\0.82\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{13}&-\frac{10}{13}\\\frac{6}{13}&\frac{10}{13}\end{matrix}\right)\left(\begin{matrix}-0.5\\0.82\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{13}\left(-0.5\right)-\frac{10}{13}\times 0.82\\\frac{6}{13}\left(-0.5\right)+\frac{10}{13}\times 0.82\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-0.9\\0.4\end{matrix}\right)
Mahia ngā tātaitanga.
x=-0.9,y=0.4
Tangohia ngā huānga poukapa x me y.
x+y=-0.5,-0.6x+0.7y=0.82
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-0.6x-0.6y=-0.6\left(-0.5\right),-0.6x+0.7y=0.82
Kia ōrite ai a x me -\frac{3x}{5}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -0.6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-0.6x-0.6y=0.3,-0.6x+0.7y=0.82
Whakarūnātia.
-0.6x+0.6x-0.6y-0.7y=0.3-0.82
Me tango -0.6x+0.7y=0.82 mai i -0.6x-0.6y=0.3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-0.6y-0.7y=0.3-0.82
Tāpiri -\frac{3x}{5} ki te \frac{3x}{5}. Ka whakakore atu ngā kupu -\frac{3x}{5} me \frac{3x}{5}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-1.3y=0.3-0.82
Tāpiri -\frac{3y}{5} ki te -\frac{7y}{10}.
-1.3y=-0.52
Tāpiri 0.3 ki te -0.82 mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=0.4
Whakawehea ngā taha e rua o te whārite ki te -1.3, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
-0.6x+0.7\times 0.4=0.82
Whakaurua te 0.4 mō y ki -0.6x+0.7y=0.82. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-0.6x+0.28=0.82
Whakareatia 0.7 ki te 0.4 mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-0.6x=0.54
Me tango 0.28 mai i ngā taha e rua o te whārite.
x=-0.9
Whakawehea ngā taha e rua o te whārite ki te -0.6, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-0.9,y=0.4
Kua oti te pūnaha te whakatau.