Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+2y=50,2x+y=40
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+2y=50
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-2y+50
Me tango 2y mai i ngā taha e rua o te whārite.
2\left(-2y+50\right)+y=40
Whakakapia te -2y+50 mō te x ki tērā atu whārite, 2x+y=40.
-4y+100+y=40
Whakareatia 2 ki te -2y+50.
-3y+100=40
Tāpiri -4y ki te y.
-3y=-60
Me tango 100 mai i ngā taha e rua o te whārite.
y=20
Whakawehea ngā taha e rua ki te -3.
x=-2\times 20+50
Whakaurua te 20 mō y ki x=-2y+50. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-40+50
Whakareatia -2 ki te 20.
x=10
Tāpiri 50 ki te -40.
x=10,y=20
Kua oti te pūnaha te whakatau.
x+2y=50,2x+y=40
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&2\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\40\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&2\\2&1\end{matrix}\right))\left(\begin{matrix}1&2\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&1\end{matrix}\right))\left(\begin{matrix}50\\40\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&2\\2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&1\end{matrix}\right))\left(\begin{matrix}50\\40\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&1\end{matrix}\right))\left(\begin{matrix}50\\40\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-2\times 2}&-\frac{2}{1-2\times 2}\\-\frac{2}{1-2\times 2}&\frac{1}{1-2\times 2}\end{matrix}\right)\left(\begin{matrix}50\\40\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{2}{3}\\\frac{2}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}50\\40\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 50+\frac{2}{3}\times 40\\\frac{2}{3}\times 50-\frac{1}{3}\times 40\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\20\end{matrix}\right)
Mahia ngā tātaitanga.
x=10,y=20
Tangohia ngā huānga poukapa x me y.
x+2y=50,2x+y=40
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x+2\times 2y=2\times 50,2x+y=40
Kia ōrite ai a x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
2x+4y=100,2x+y=40
Whakarūnātia.
2x-2x+4y-y=100-40
Me tango 2x+y=40 mai i 2x+4y=100 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4y-y=100-40
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
3y=100-40
Tāpiri 4y ki te -y.
3y=60
Tāpiri 100 ki te -40.
y=20
Whakawehea ngā taha e rua ki te 3.
2x+20=40
Whakaurua te 20 mō y ki 2x+y=40. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x=20
Me tango 20 mai i ngā taha e rua o te whārite.
x=10
Whakawehea ngā taha e rua ki te 2.
x=10,y=20
Kua oti te pūnaha te whakatau.