Whakaoti mō f, a, v
f=10
a=-\frac{1}{5}=-0.2
v=50
Tohaina
Kua tāruatia ki te papatopenga
10=\left(-a\right)\times 50
Whakaarohia te whārite tuatahi. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
\frac{10}{50}=-a
Whakawehea ngā taha e rua ki te 50.
\frac{1}{5}=-a
Whakahekea te hautanga \frac{10}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
-a=\frac{1}{5}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
a=\frac{\frac{1}{5}}{-1}
Whakawehea ngā taha e rua ki te -1.
a=\frac{1}{5\left(-1\right)}
Tuhia te \frac{\frac{1}{5}}{-1} hei hautanga kotahi.
a=\frac{1}{-5}
Whakareatia te 5 ki te -1, ka -5.
a=-\frac{1}{5}
Ka taea te hautanga \frac{1}{-5} te tuhi anō ko -\frac{1}{5} mā te tango i te tohu tōraro.
f=10 a=-\frac{1}{5} v=50
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}