Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

8x+6y=-10,-8x-5y=15
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
8x+6y=-10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
8x=-6y-10
Me tango 6y mai i ngā taha e rua o te whārite.
x=\frac{1}{8}\left(-6y-10\right)
Whakawehea ngā taha e rua ki te 8.
x=-\frac{3}{4}y-\frac{5}{4}
Whakareatia \frac{1}{8} ki te -6y-10.
-8\left(-\frac{3}{4}y-\frac{5}{4}\right)-5y=15
Whakakapia te \frac{-3y-5}{4} mō te x ki tērā atu whārite, -8x-5y=15.
6y+10-5y=15
Whakareatia -8 ki te \frac{-3y-5}{4}.
y+10=15
Tāpiri 6y ki te -5y.
y=5
Me tango 10 mai i ngā taha e rua o te whārite.
x=-\frac{3}{4}\times 5-\frac{5}{4}
Whakaurua te 5 mō y ki x=-\frac{3}{4}y-\frac{5}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-15-5}{4}
Whakareatia -\frac{3}{4} ki te 5.
x=-5
Tāpiri -\frac{5}{4} ki te -\frac{15}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-5,y=5
Kua oti te pūnaha te whakatau.
8x+6y=-10,-8x-5y=15
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}8&6\\-8&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\15\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}8&6\\-8&-5\end{matrix}\right))\left(\begin{matrix}8&6\\-8&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&6\\-8&-5\end{matrix}\right))\left(\begin{matrix}-10\\15\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}8&6\\-8&-5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&6\\-8&-5\end{matrix}\right))\left(\begin{matrix}-10\\15\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&6\\-8&-5\end{matrix}\right))\left(\begin{matrix}-10\\15\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{8\left(-5\right)-6\left(-8\right)}&-\frac{6}{8\left(-5\right)-6\left(-8\right)}\\-\frac{-8}{8\left(-5\right)-6\left(-8\right)}&\frac{8}{8\left(-5\right)-6\left(-8\right)}\end{matrix}\right)\left(\begin{matrix}-10\\15\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{8}&-\frac{3}{4}\\1&1\end{matrix}\right)\left(\begin{matrix}-10\\15\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{8}\left(-10\right)-\frac{3}{4}\times 15\\-10+15\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\5\end{matrix}\right)
Mahia ngā tātaitanga.
x=-5,y=5
Tangohia ngā huānga poukapa x me y.
8x+6y=-10,-8x-5y=15
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-8\times 8x-8\times 6y=-8\left(-10\right),8\left(-8\right)x+8\left(-5\right)y=8\times 15
Kia ōrite ai a 8x me -8x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -8 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 8.
-64x-48y=80,-64x-40y=120
Whakarūnātia.
-64x+64x-48y+40y=80-120
Me tango -64x-40y=120 mai i -64x-48y=80 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-48y+40y=80-120
Tāpiri -64x ki te 64x. Ka whakakore atu ngā kupu -64x me 64x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-8y=80-120
Tāpiri -48y ki te 40y.
-8y=-40
Tāpiri 80 ki te -120.
y=5
Whakawehea ngā taha e rua ki te -8.
-8x-5\times 5=15
Whakaurua te 5 mō y ki -8x-5y=15. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-8x-25=15
Whakareatia -5 ki te 5.
-8x=40
Me tāpiri 25 ki ngā taha e rua o te whārite.
x=-5
Whakawehea ngā taha e rua ki te -8.
x=-5,y=5
Kua oti te pūnaha te whakatau.