Whakaoti mō x, y
x=-\frac{15}{28}\approx -0.535714286
y = \frac{25}{7} = 3\frac{4}{7} \approx 3.571428571
Graph
Tohaina
Kua tāruatia ki te papatopenga
8x+4y=10,4x+9y=30
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
8x+4y=10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
8x=-4y+10
Me tango 4y mai i ngā taha e rua o te whārite.
x=\frac{1}{8}\left(-4y+10\right)
Whakawehea ngā taha e rua ki te 8.
x=-\frac{1}{2}y+\frac{5}{4}
Whakareatia \frac{1}{8} ki te -4y+10.
4\left(-\frac{1}{2}y+\frac{5}{4}\right)+9y=30
Whakakapia te -\frac{y}{2}+\frac{5}{4} mō te x ki tērā atu whārite, 4x+9y=30.
-2y+5+9y=30
Whakareatia 4 ki te -\frac{y}{2}+\frac{5}{4}.
7y+5=30
Tāpiri -2y ki te 9y.
7y=25
Me tango 5 mai i ngā taha e rua o te whārite.
y=\frac{25}{7}
Whakawehea ngā taha e rua ki te 7.
x=-\frac{1}{2}\times \frac{25}{7}+\frac{5}{4}
Whakaurua te \frac{25}{7} mō y ki x=-\frac{1}{2}y+\frac{5}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{25}{14}+\frac{5}{4}
Whakareatia -\frac{1}{2} ki te \frac{25}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{15}{28}
Tāpiri \frac{5}{4} ki te -\frac{25}{14} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{15}{28},y=\frac{25}{7}
Kua oti te pūnaha te whakatau.
8x+4y=10,4x+9y=30
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}8&4\\4&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\30\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}8&4\\4&9\end{matrix}\right))\left(\begin{matrix}8&4\\4&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&4\\4&9\end{matrix}\right))\left(\begin{matrix}10\\30\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}8&4\\4&9\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&4\\4&9\end{matrix}\right))\left(\begin{matrix}10\\30\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&4\\4&9\end{matrix}\right))\left(\begin{matrix}10\\30\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{8\times 9-4\times 4}&-\frac{4}{8\times 9-4\times 4}\\-\frac{4}{8\times 9-4\times 4}&\frac{8}{8\times 9-4\times 4}\end{matrix}\right)\left(\begin{matrix}10\\30\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{56}&-\frac{1}{14}\\-\frac{1}{14}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}10\\30\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{56}\times 10-\frac{1}{14}\times 30\\-\frac{1}{14}\times 10+\frac{1}{7}\times 30\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{15}{28}\\\frac{25}{7}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{15}{28},y=\frac{25}{7}
Tangohia ngā huānga poukapa x me y.
8x+4y=10,4x+9y=30
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 8x+4\times 4y=4\times 10,8\times 4x+8\times 9y=8\times 30
Kia ōrite ai a 8x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 8.
32x+16y=40,32x+72y=240
Whakarūnātia.
32x-32x+16y-72y=40-240
Me tango 32x+72y=240 mai i 32x+16y=40 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
16y-72y=40-240
Tāpiri 32x ki te -32x. Ka whakakore atu ngā kupu 32x me -32x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-56y=40-240
Tāpiri 16y ki te -72y.
-56y=-200
Tāpiri 40 ki te -240.
y=\frac{25}{7}
Whakawehea ngā taha e rua ki te -56.
4x+9\times \frac{25}{7}=30
Whakaurua te \frac{25}{7} mō y ki 4x+9y=30. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x+\frac{225}{7}=30
Whakareatia 9 ki te \frac{25}{7}.
4x=-\frac{15}{7}
Me tango \frac{225}{7} mai i ngā taha e rua o te whārite.
x=-\frac{15}{28}
Whakawehea ngā taha e rua ki te 4.
x=-\frac{15}{28},y=\frac{25}{7}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}