Whakaoti mō x, y
x=2
y=8
Graph
Tohaina
Kua tāruatia ki te papatopenga
7x+5y=54,3x+4y=38
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
7x+5y=54
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
7x=-5y+54
Me tango 5y mai i ngā taha e rua o te whārite.
x=\frac{1}{7}\left(-5y+54\right)
Whakawehea ngā taha e rua ki te 7.
x=-\frac{5}{7}y+\frac{54}{7}
Whakareatia \frac{1}{7} ki te -5y+54.
3\left(-\frac{5}{7}y+\frac{54}{7}\right)+4y=38
Whakakapia te \frac{-5y+54}{7} mō te x ki tērā atu whārite, 3x+4y=38.
-\frac{15}{7}y+\frac{162}{7}+4y=38
Whakareatia 3 ki te \frac{-5y+54}{7}.
\frac{13}{7}y+\frac{162}{7}=38
Tāpiri -\frac{15y}{7} ki te 4y.
\frac{13}{7}y=\frac{104}{7}
Me tango \frac{162}{7} mai i ngā taha e rua o te whārite.
y=8
Whakawehea ngā taha e rua o te whārite ki te \frac{13}{7}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{5}{7}\times 8+\frac{54}{7}
Whakaurua te 8 mō y ki x=-\frac{5}{7}y+\frac{54}{7}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-40+54}{7}
Whakareatia -\frac{5}{7} ki te 8.
x=2
Tāpiri \frac{54}{7} ki te -\frac{40}{7} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=2,y=8
Kua oti te pūnaha te whakatau.
7x+5y=54,3x+4y=38
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}7&5\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}54\\38\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}7&5\\3&4\end{matrix}\right))\left(\begin{matrix}7&5\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&5\\3&4\end{matrix}\right))\left(\begin{matrix}54\\38\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}7&5\\3&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&5\\3&4\end{matrix}\right))\left(\begin{matrix}54\\38\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&5\\3&4\end{matrix}\right))\left(\begin{matrix}54\\38\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{7\times 4-5\times 3}&-\frac{5}{7\times 4-5\times 3}\\-\frac{3}{7\times 4-5\times 3}&\frac{7}{7\times 4-5\times 3}\end{matrix}\right)\left(\begin{matrix}54\\38\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{13}&-\frac{5}{13}\\-\frac{3}{13}&\frac{7}{13}\end{matrix}\right)\left(\begin{matrix}54\\38\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{13}\times 54-\frac{5}{13}\times 38\\-\frac{3}{13}\times 54+\frac{7}{13}\times 38\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\8\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=8
Tangohia ngā huānga poukapa x me y.
7x+5y=54,3x+4y=38
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 7x+3\times 5y=3\times 54,7\times 3x+7\times 4y=7\times 38
Kia ōrite ai a 7x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 7.
21x+15y=162,21x+28y=266
Whakarūnātia.
21x-21x+15y-28y=162-266
Me tango 21x+28y=266 mai i 21x+15y=162 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
15y-28y=162-266
Tāpiri 21x ki te -21x. Ka whakakore atu ngā kupu 21x me -21x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-13y=162-266
Tāpiri 15y ki te -28y.
-13y=-104
Tāpiri 162 ki te -266.
y=8
Whakawehea ngā taha e rua ki te -13.
3x+4\times 8=38
Whakaurua te 8 mō y ki 3x+4y=38. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x+32=38
Whakareatia 4 ki te 8.
3x=6
Me tango 32 mai i ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te 3.
x=2,y=8
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}