Whakaoti mō x, y
x=0
y=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
7x+5y=5,-7x+12y=12
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
7x+5y=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
7x=-5y+5
Me tango 5y mai i ngā taha e rua o te whārite.
x=\frac{1}{7}\left(-5y+5\right)
Whakawehea ngā taha e rua ki te 7.
x=-\frac{5}{7}y+\frac{5}{7}
Whakareatia \frac{1}{7} ki te -5y+5.
-7\left(-\frac{5}{7}y+\frac{5}{7}\right)+12y=12
Whakakapia te \frac{-5y+5}{7} mō te x ki tērā atu whārite, -7x+12y=12.
5y-5+12y=12
Whakareatia -7 ki te \frac{-5y+5}{7}.
17y-5=12
Tāpiri 5y ki te 12y.
17y=17
Me tāpiri 5 ki ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua ki te 17.
x=\frac{-5+5}{7}
Whakaurua te 1 mō y ki x=-\frac{5}{7}y+\frac{5}{7}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=0
Tāpiri \frac{5}{7} ki te -\frac{5}{7} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=0,y=1
Kua oti te pūnaha te whakatau.
7x+5y=5,-7x+12y=12
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}7&5\\-7&12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\12\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}7&5\\-7&12\end{matrix}\right))\left(\begin{matrix}7&5\\-7&12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&5\\-7&12\end{matrix}\right))\left(\begin{matrix}5\\12\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}7&5\\-7&12\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&5\\-7&12\end{matrix}\right))\left(\begin{matrix}5\\12\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&5\\-7&12\end{matrix}\right))\left(\begin{matrix}5\\12\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{7\times 12-5\left(-7\right)}&-\frac{5}{7\times 12-5\left(-7\right)}\\-\frac{-7}{7\times 12-5\left(-7\right)}&\frac{7}{7\times 12-5\left(-7\right)}\end{matrix}\right)\left(\begin{matrix}5\\12\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{119}&-\frac{5}{119}\\\frac{1}{17}&\frac{1}{17}\end{matrix}\right)\left(\begin{matrix}5\\12\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{119}\times 5-\frac{5}{119}\times 12\\\frac{1}{17}\times 5+\frac{1}{17}\times 12\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\1\end{matrix}\right)
Mahia ngā tātaitanga.
x=0,y=1
Tangohia ngā huānga poukapa x me y.
7x+5y=5,-7x+12y=12
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-7\times 7x-7\times 5y=-7\times 5,7\left(-7\right)x+7\times 12y=7\times 12
Kia ōrite ai a 7x me -7x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 7.
-49x-35y=-35,-49x+84y=84
Whakarūnātia.
-49x+49x-35y-84y=-35-84
Me tango -49x+84y=84 mai i -49x-35y=-35 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-35y-84y=-35-84
Tāpiri -49x ki te 49x. Ka whakakore atu ngā kupu -49x me 49x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-119y=-35-84
Tāpiri -35y ki te -84y.
-119y=-119
Tāpiri -35 ki te -84.
y=1
Whakawehea ngā taha e rua ki te -119.
-7x+12=12
Whakaurua te 1 mō y ki -7x+12y=12. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-7x=0
Me tango 12 mai i ngā taha e rua o te whārite.
x=0
Whakawehea ngā taha e rua ki te -7.
x=0,y=1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}