Whakaoti mō x, y
x=1
y=\frac{1}{2}=0.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x-2y=5,3x-2y=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
6x-2y=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
6x=2y+5
Me tāpiri 2y ki ngā taha e rua o te whārite.
x=\frac{1}{6}\left(2y+5\right)
Whakawehea ngā taha e rua ki te 6.
x=\frac{1}{3}y+\frac{5}{6}
Whakareatia \frac{1}{6} ki te 2y+5.
3\left(\frac{1}{3}y+\frac{5}{6}\right)-2y=2
Whakakapia te \frac{y}{3}+\frac{5}{6} mō te x ki tērā atu whārite, 3x-2y=2.
y+\frac{5}{2}-2y=2
Whakareatia 3 ki te \frac{y}{3}+\frac{5}{6}.
-y+\frac{5}{2}=2
Tāpiri y ki te -2y.
-y=-\frac{1}{2}
Me tango \frac{5}{2} mai i ngā taha e rua o te whārite.
y=\frac{1}{2}
Whakawehea ngā taha e rua ki te -1.
x=\frac{1}{3}\times \frac{1}{2}+\frac{5}{6}
Whakaurua te \frac{1}{2} mō y ki x=\frac{1}{3}y+\frac{5}{6}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{1+5}{6}
Whakareatia \frac{1}{3} ki te \frac{1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1
Tāpiri \frac{5}{6} ki te \frac{1}{6} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=\frac{1}{2}
Kua oti te pūnaha te whakatau.
6x-2y=5,3x-2y=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}6&-2\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}6&-2\\3&-2\end{matrix}\right))\left(\begin{matrix}6&-2\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-2\\3&-2\end{matrix}\right))\left(\begin{matrix}5\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}6&-2\\3&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-2\\3&-2\end{matrix}\right))\left(\begin{matrix}5\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-2\\3&-2\end{matrix}\right))\left(\begin{matrix}5\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{6\left(-2\right)-\left(-2\times 3\right)}&-\frac{-2}{6\left(-2\right)-\left(-2\times 3\right)}\\-\frac{3}{6\left(-2\right)-\left(-2\times 3\right)}&\frac{6}{6\left(-2\right)-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}5\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&-\frac{1}{3}\\\frac{1}{2}&-1\end{matrix}\right)\left(\begin{matrix}5\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 5-\frac{1}{3}\times 2\\\frac{1}{2}\times 5-2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\\frac{1}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=\frac{1}{2}
Tangohia ngā huānga poukapa x me y.
6x-2y=5,3x-2y=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6x-3x-2y+2y=5-2
Me tango 3x-2y=2 mai i 6x-2y=5 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6x-3x=5-2
Tāpiri -2y ki te 2y. Ka whakakore atu ngā kupu -2y me 2y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
3x=5-2
Tāpiri 6x ki te -3x.
3x=3
Tāpiri 5 ki te -2.
x=1
Whakawehea ngā taha e rua ki te 3.
3-2y=2
Whakaurua te 1 mō x ki 3x-2y=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
-2y=-1
Me tango 3 mai i ngā taha e rua o te whārite.
y=\frac{1}{2}
Whakawehea ngā taha e rua ki te -2.
x=1,y=\frac{1}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}